Journal of Mathematical Imaging and Vision

, Volume 47, Issue 1–2, pp 138–150 | Cite as

Histogram-Based Optical Flow for Motion Estimation in Ultrasound Imaging

  • Daniel Tenbrinck
  • Sönke Schmid
  • Xiaoyi Jiang
  • Klaus Schäfers
  • Jörg Stypmann


Motion estimation on ultrasound data is often referred to as ‘Speckle Tracking’ in clinical environments and plays an important role in diagnosis and monitoring of cardiovascular diseases and the identification of abnormal cardiac motion. The impact of physical effects in the process of data acquisition raises many problems for conventional image processing techniques. The most significant difference to other medical data is its high level of speckle noise, which has completely different characteristics from other noise models, e.g., additive Gaussian noise. In this paper we address the problem of multiplicative speckle noise for motion estimation techniques that are based on optical flow methods and prove that the influence of this noise leads to wrong correspondences between image regions if not taken into account. To overcome these problems we propose the use of local statistics and introduce an optical flow method which uses histograms as discrete representations of local statistics for motion analysis. We show that this approach is more robust under the presence of speckle noise than classical optical flow methods.


Ultrasound Motion analysis Local statistics Histogram Optical flow Constancy constraint Speckle noise 


  1. 1.
    Achmad, B., Mustafa, M., Hussain, A.: Inter-frame enhancement of ultrasound images using optical flow. In: Proc. 1st Int. Visual Informatics Conf.: Bridging Research and Practice, pp. 191–201 (2009) CrossRefGoogle Scholar
  2. 2.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92, 1–31 (2011) CrossRefGoogle Scholar
  3. 3.
    Becciu, A., Assem, H., Florack, L., Kozerke, S., Roode, V., Haar Romeny, B.: A multi-scale feature based optical flow method for 3D cardiac motion estimation. In: Proc. 2nd Int. Conf. on Scale Space and Variational Methods in Comp. Vis., pp. 588–599 (2009) CrossRefGoogle Scholar
  4. 4.
    Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 500–513 (2011) CrossRefGoogle Scholar
  5. 5.
    D’Ascenzi, F., Cameli, M., Zaca, V., Lisi, M., Santoro, A., Causarano, A., Mondillo, S.: Supernormal diastolic function and role of left atrial myocardial deformation analysis by 2D speckle tracking echocardiography in elite soccer players. Echocardiography 28, 320–326 (2011) CrossRefGoogle Scholar
  6. 6.
    Dawood, M., Büther, F., Jiang, X., Schäfers, K.: Respiratory motion correction in 3D PET data with advanced optical flow algorithms. IEEE Trans. Med. Imaging 9, 1164–1175 (2008) CrossRefGoogle Scholar
  7. 7.
    Dawood, M., Lang, N., Jiang, X., Schäfers, K.: Lung motion correction on respiratory gated 3-d pet/ct images. IEEE Trans. Med. Imaging 25, 476–485 (2006) CrossRefGoogle Scholar
  8. 8.
    Duan, Q., Angelini, E., Lorsakul, A.: Coronary occlusion detection with 4D optical flow based strain estimation on 4D ultrasound. In: Proc. of 5th Int. Conf. on Functional Imaging and Modeling of the Heart, pp. 211–219 (2009) CrossRefGoogle Scholar
  9. 9.
    Fahad, A., Morris, T.: Multiple combined constraints for optical flow estimation. In: Proc. of 3rd Int. Conf. on Advances in Vis. Comp., vol. 2, pp. 11–20 (2007) Google Scholar
  10. 10.
    Fleet, D., Weiss, Y.: Optical flow estimation. In: Paragios, N., Chen, Y., Fauregas, O. (eds.) The Handbook of Math. Models in Comp. Vis., pp. 241–260. Springer, Berlin (2005) Google Scholar
  11. 11.
    Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981) CrossRefGoogle Scholar
  12. 12.
    Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39, 62–74 (2011) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Krissian, K., Kikinis, R., Westin, C.-F., Vosburgh, K.: Speckle-constrained filtering of ultrasound images. In: Proc. of IEEE Computer Society Conf. CVPR, vol. 2, pp. 547–552 (2005) Google Scholar
  14. 14.
    Liu, C., Yuen, J., Torralba, A.: SIFT flow: Dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33, 978–994 (2011) CrossRefGoogle Scholar
  15. 15.
    Loupas, T., McDicken, W., Allan, P.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36, 129–135 (1989) CrossRefGoogle Scholar
  16. 16.
    Papenberg, N., Bruhn, A., Brox, T.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vis. 67, 141–158 (2006) CrossRefGoogle Scholar
  17. 17.
    Perreault, C., Auclier-Fortier, M.-F.: Speckle simulation based on B-mode echographic image acquisition model. In: Proc. of 4th Canad. Conf. Comp. and Robot Vis., pp. 379–386 (2007) Google Scholar
  18. 18.
    Rudin, L., Lions, P., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–122. Springer, Berlin (2003) CrossRefGoogle Scholar
  19. 19.
    Schmid, S., Tenbrinck, D., Jiang, X., Schäfers, K., Tiemann, K., Stypmann, J.: Histogram-based optical flow for functional imaging in echocardiography. In: Proc. of 14th Int. Conf. on Computer Analysis of Images and Patterns, pp. 477–485 (2011) CrossRefGoogle Scholar
  20. 20.
    Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.: 4D XCAT phantom for multimodality imaging research. Med. Phys. 37, 4902–4915 (2010) CrossRefGoogle Scholar
  21. 21.
    Song, S., Leahy, R.: Computation of 3-D velocity fields from 3-D cine CT images of a human heart. IEEE Trans. Med. Imaging 10, 295–306 (1991) CrossRefGoogle Scholar
  22. 22.
    Stricker, M., Orengo, M.: Similarity of color images. In: Proc. of Conf. on Storage and Retrieval for Image and Video Databases, pp. 381–392 (1995) CrossRefGoogle Scholar
  23. 23.
    Stypmann, J., Engelen, M., Troatz, C., Rothenburger, M., Eckardt, L., Tiemann, K.: Echocardiographic assessment of global left ventricular function in mice. Lab. Anim. 43, 127–137 (2009) CrossRefGoogle Scholar
  24. 24.
    Trottenberg, U., Schuller, A.: Multigrid. Academic Press, San Diego (2001) MATHGoogle Scholar
  25. 25.
    Veronesi, E.F., Corsi, C., Caiani, E., Sarti, A., Lamberti, C.: Tracking of left ventricular long axis from real-time three-dimensional echocardiography using optical flow techniques. IEEE Trans. Inf. Technol. Biomed. 10, 174–181 (2006) CrossRefGoogle Scholar
  26. 26.
    Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1744–1757 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Daniel Tenbrinck
    • 1
  • Sönke Schmid
    • 1
  • Xiaoyi Jiang
    • 1
  • Klaus Schäfers
    • 2
  • Jörg Stypmann
    • 3
  1. 1.Dept. of Mathematics and Computer ScienceUniversity of MünsterMünsterGermany
  2. 2.European Institute for Molecular ImagingUniversity of MünsterMünsterGermany
  3. 3.Dept. of Cardiology and AngiologyUniversity Hospital of MünsterMünsterGermany

Personalised recommendations