Journal of Mathematical Imaging and Vision

, Volume 47, Issue 1–2, pp 13–26 | Cite as

P System Implementation of Dynamic Programming Stereo

  • Georgy Gimel’farb
  • Radu Nicolescu
  • Sharvin Ragavan
Article

Abstract

Designing parallel versions of sequential algorithms has attracted renewed attention, due to recent hardware advances, including various general-purpose multi-core and many-core processors, as well as special-purpose FPGA implementations. P systems consist of networks of autonomous cells, such that each cell transforms its input signals in accord with its symbol-rewriting rules and feeds the output results into its immediate neighbours. Inherent massive intra- and inter-cell parallelisms make P systems a prospective theoretical testbed for designing efficient parallel and parallel-sequential algorithms. This paper discusses the capabilities of P systems to implement the symmetric dynamic programming stereo (SDPS) matching algorithm, which explicitly accounts for binocular or monocular visibility of 3D surface points. Given enough cells, the P system implementation speeds up the inner algorithm loop from O(nd) to O(n+d), where n is the width of a stereo image and d is the disparity range. The implementation gives also an insight into a more general SDPS that accounts for a possible multiplicity of solutions of the ill-posed problem of optimal stereo matching.

Keywords

Parallel systems Membrane computing Stereo matching Symmetric dynamic programming stereo (SDPS) 

References

  1. 1.
    Bălănescu, T., Nicolescu, R., Wu, H.: Asynchronous P systems. Int. J. Nat. Comput. Res. 2(2), 1–18 (2011) CrossRefGoogle Scholar
  2. 2.
    Carnero, J., Díaz-Pernil, D., Molina-Abril, H., Real, P.: Image segmentation inspired by cellular models using hardware programming. In: González-Díaz, R., Real-Jurado, P. (eds.) 3rd International Workshop on Computational Topology in Image Context, pp. 143–150 (2010) Google Scholar
  3. 3.
    Christinal, H.A., Díaz-Pernil, D., Real, P.: P systems and computational algebraic topology. Math. Comput. Model. 52(11–12), 1982–1996 (2010) MATHCrossRefGoogle Scholar
  4. 4.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: A faster P solution for the Byzantine agreement problem. In: Gheorghe, M., Hinze, T., Păun, G. (eds.) Conference on Membrane Computing. Lecture Notes in Computer Science, vol. 6501, pp. 175–197. Springer, Berlin (2010) CrossRefGoogle Scholar
  5. 5.
    Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzantine agreement. J. Log. Algebr. Program. 79(6), 334–349 (2010) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gimel’farb, G.L.: Probabilistic regularisation and symmetry in binocular dynamic programming stereo. Pattern Recognit. Lett. 23(4), 431–442 (2002) MATHCrossRefGoogle Scholar
  7. 7.
    Gimel’farb, G.L., Nicolescu, R., Ragavan, S.: P systems in stereo matching. In: Real, P., et al. (eds.) Computer Analysis of Images and Patterns—14th International Conference, CAIP 2011, Proceedings, Part II, Seville, Spain, August 29–31, 2011. LNCS, vol. 6855, pp. 285–292. Springer, Berlin (2011) Google Scholar
  8. 8.
    Middlebury stereo vision webpage (2001). URL http://vision.middlebury.edu/stereo/
  9. 9.
    Morris, J., Jawed, K., Gimel’farb, G.: Intelligent vision: A first step—real time stereovision. In: Proc. 11th Int. Conf. on Advanced Concepts for Intelligent Vision Systems (ACIVS 2009), Bordeaux, France, Sept. 28–Oct. 2, 2009. LNCS, vol. 5807, pp. 355–366. Springer, Berlin (2009) CrossRefGoogle Scholar
  10. 10.
    Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. In: Calude, C., Kari, J., Petre, I., Rozenberg, G. (eds.) Unconventional Computation. Lecture Notes in Computer Science, vol. 6714, pp. 164–176. Springer, Berlin (2011) CrossRefGoogle Scholar
  11. 11.
    Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Towards structured modelling with hyperdag P systems. Int. J. Comput. Commun. Control 2, 209–222 (2010) Google Scholar
  12. 12.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000) MATHCrossRefGoogle Scholar
  13. 13.
    Păun, G.: Membrane Computing: An Introduction. Springer, New York (2002) MATHCrossRefGoogle Scholar
  14. 14.
    Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 1–42. Springer, Berlin (2006) Google Scholar
  15. 15.
    Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane computing: dP systems. Int. J. Comput. Commun. Control 5(2), 238–252 (2010) Google Scholar
  16. 16.
    Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, New York (2010) MATHCrossRefGoogle Scholar
  17. 17.
    Peña-Cantillana, F., Díaz-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A parallel implementation of the thresholding problem by using tissue-like p systems. In: Real, P., et al. (eds.) Computer Analysis of Images and Patterns—14th International Conference, CAIP 2011, Proceedings, Part II, Seville, Spain, August 29–31, 2011. LNCS, vol. 6855, pp. 277–284. Springer, Berlin (2011) Google Scholar
  18. 18.
    Real, P., Díaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W.G. (eds.): Computer Analysis of Images and Patterns—14th International Conference, CAIP 2011, Proceedings, Part II, Seville, Spain, August 29–31, 2011. LNCS, vol. 6855, pp. 277–284. Springer, Berlin (2011) Google Scholar
  19. 19.
    The P systems webpage. URL http://ppage.psystems.eu

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Georgy Gimel’farb
    • 1
  • Radu Nicolescu
    • 1
  • Sharvin Ragavan
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations