Journal of Mathematical Imaging and Vision

, Volume 45, Issue 1, pp 76–102 | Cite as

Texture Description Through Histograms of Equivalent Patterns

  • Antonio Fernández
  • Marcos X. Álvarez
  • Francesco Bianconi
Article

Abstract

The aim of this paper is to describe a general framework for texture analysis which we refer to as the HEP (histograms of equivalent patterns). The HEP, of which we give a clear and unambiguous mathematical definition, is based on partitioning the feature space associated to image patches of predefined shape and size. This task is approached by defining, a priori, suitable local or global functions of the pixels’ intensities. In a comprehensive survey we show that diverse texture descriptors, such as co-occurrence matrices, gray-level differences and local binary patterns, can be seen all to be examples of the HEP. In the experimental part we comparatively evaluate a comprehensive set of these descriptors on an extensive texture classification task. Within the class of HEP schemes, improved local ternary patterns (ILTP) and completed local binary patterns (CLBP) emerge as the best of parametric and non-parametric methods, respectively. The results also show the following patterns: (1) higher effectiveness of multi-level discretization in comparison with binarization; (2) higher accuracy of parametric methods when compared to non-parametric ones; (3) a general trend of increasing performance with increasing dimensionality; and (4) better performance of point-to-average thresholding against point-to-point thresholding.

Keywords

Image classification Texture features BGC LBP LTP 

References

  1. 1.
    Arndt, J.: Matters Computational: Ideas, Algorithms, Source Code. Springer, Berlin (2010) Google Scholar
  2. 2.
    Austin, J.: Grey scale N tuple processing. In: Kittler, J. (ed.) Pattern Recognition: 4th International Conference. Lecture Notes in Computer Science, vol. 301, pp. 110–120. Springer, Berlin (1988) Google Scholar
  3. 3.
    Beck, M., Robins, S.: Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Springer, New York (2007) MATHGoogle Scholar
  4. 4.
    Bianconi, F., Fernández, A., González, E., Ribas, F.: Texture classification through combination of sequential colour texture classifiers. In: Rueda, L., Mery, D., Kittler, J. (eds.) Progress in Pattern Recognition, Image Analysis and Applications. Proceedings of the 12th Iberoamerican Congress on Pattern Recognition (CIARP 2007). Lecture Notes in Computer Science, vol. 4756, pp. 231–240. Springer, Berlin (2008). doi:10.1007/978-3-540-76725-1_25 Google Scholar
  5. 5.
    Bianconi, F., Fernández, A., González, E., Caride, D., Calviño, A.: Rotation-invariant colour texture classification through multilayer CCR. Pattern Recognit. Lett. 30(8), 765–773 (2009). doi:10.1016/j.patrec.2009.02.006 CrossRefGoogle Scholar
  6. 6.
    Bianconi, F., Harvey, R., Southam, P., Fernández, A.: Theoretical and experimental comparison of different approaches for color texture classification. J. Electron. Imaging 20(4), 006 (2011). doi:10.1117/1.3651210 CrossRefGoogle Scholar
  7. 7.
    Bianconi, F., Fernández, A.: On the occurrence probability of local binary patterns: a theoretical study. J. Math. Imaging Vis. 40(3), 259–268 (2011). doi:10.1007/s10851-011-0261-7 CrossRefGoogle Scholar
  8. 8.
    Bonn BTF database (2003). Available online at http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/
  9. 9.
    Bradley, A., Jackway, P., Lovell, B.: Classification in scale-space: applications to texture analysis. In: Proceedings of the 14th International Conference on Information Processing in Medical Imaging (IMPI’95), Ile de Berder, France, pp. 375–376 (1995) Google Scholar
  10. 10.
    Brodatz, P.: Textures: a Photographic Album for Artists and Designers. Dover, New York (1966) Google Scholar
  11. 11.
    Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. II, pp. 1597–1604 (2005) CrossRefGoogle Scholar
  12. 12.
    Carstensen, J.M.: Cooccurrence feature performance in texture classification. In: Proceedings of the 8th Scandinavian Conference on Image Analysis (SCIA 1993), Tromsø, Norway, pp. 831–838 (1993) Google Scholar
  13. 13.
    Chang, C.I., Chen, Y.: Gradient texture unit coding for texture analysis. Opt. Eng. 43(8), 1891–1902 (2004) CrossRefGoogle Scholar
  14. 14.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Chang, C.I.: A new application of texture unit coding to mass classification for mammograms. In: Proceedings of IEEE International Conference on Image Processing, 2004 (ICIP’04), vol. 5, pp. 3335–3338 (2004). doi:10.1109/ICIP.2004.1421828 Google Scholar
  16. 16.
    Crosier, M., Griffin, L.D.: Using basic image features for texture classification. Int. J. Comput. Vis. 88, 447–460 (2010). doi:10.1007/s11263-009-0315-0 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2, 1160–1169 (1985) CrossRefGoogle Scholar
  18. 18.
    Davies, E.R.: Introduction to texture analysis. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of texture analysis, pp. 1–31. Imperial College Press, London (2008) CrossRefGoogle Scholar
  19. 19.
    Dell’Acqua, F., Gamba, P.: Discriminating urban environments using multiscale texture and multiple SAR images. Int. J. Remote Sens. 17(18), 3797–3812 (2006) CrossRefGoogle Scholar
  20. 20.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. Wiley, New York (1968) MATHGoogle Scholar
  21. 21.
    Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. 22(6), 913–926 (2011). doi:10.1007/s00138-010-0253-4 CrossRefGoogle Scholar
  22. 22.
    Fernández, A., Álvarez, M.X., Bianconi, F.: Image classification with binary gradient contours. Opt. Lasers Eng. 49(9–10), 1177–1184 (2011). doi:10.1016/j.optlaseng.2011.05.003 CrossRefGoogle Scholar
  23. 23.
    Fröba, B., Ernst, A.: Face detection with the modified census transform. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2004), pp. 91–96 (2004) CrossRefGoogle Scholar
  24. 24.
    Fu, X., Wei, W.: Centralized binary patterns embedded with image euclidean distance for facial expression recognition. In: Proceedings of the Fourth International Conference on Natural Computation (ICNC’08), vol. 4, pp. 115–119 (2008) CrossRefGoogle Scholar
  25. 25.
    Ghita, O., Ilea, D.E., Fernández, A., Whelan, P.F.: Local binary patterns versus signal processing texture analysis. A study from a performance evaluation perspective. Sens. Rev. 32, 149–162 (2012). doi:10.1108/02602281211209446 CrossRefGoogle Scholar
  26. 26.
    Gong, P., Marceau, D.J., Howarth, P.J.: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens. Environ. 40, 137–151 (1992) CrossRefGoogle Scholar
  27. 27.
    Gool, L.V., Dewaele, P., Oosterlinck, A.: Texture analysis anno 1983. Comput. Vis. Graph. Image Process. 29(3), 336–3570 (1985). doi:10.1016/0734-189X(85)90130-6 CrossRefGoogle Scholar
  28. 28.
    Gotlieb, C.C., Kreyszig, H.E.: Texture descriptors based on co-occurrence matrices. Comput. Vis. Graph. Image Process. 51(1), 70–86 (1990). doi:10.1016/S0734-189X(05)80063-5 CrossRefGoogle Scholar
  29. 29.
    Griffin, L., Lillholm, M.: Hypotheses for image features, icons and textons. Int. J. Comput. Vis. 70, 213–230 (2006) CrossRefGoogle Scholar
  30. 30.
    Griffin, L.D.: Private communication (2012) Google Scholar
  31. 31.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Guo, Z., Lin, Q., You, J., Zhang, D., Liu, W.: Local directional derivative pattern for rotation invariant texture classification. Neural Comput. Appl. 1–12 (2011). doi:10.1007/s00521-011-0586-6. Published online 19 April 2011
  33. 33.
    Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: Proceedings of the 4th International Conference on Image Analysis and Recognition (ICIAR 2007), Montreal, Canada. Lecture Notes in Computer Science, vol. 4633, pp. 387–398 (2007) Google Scholar
  34. 34.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973) CrossRefGoogle Scholar
  35. 35.
    Harwood, D., Ojala, T., Pietikäinen, M., Kelman, S., Davis, L.S.: Texture classification by center-symmetric auto-correlation, using Kullback discrimination of distributions. Technical report CAR-TR-678, Center for Automation Research, University of Maryland (1993) Google Scholar
  36. 36.
    Hauth, M., Etzmuss, O., Eberhardt, B., Klein, R., Sarlette, R., Sattler, M., Daubert, K., Kautz, J.: Cloth animation and rendering. In: Proceedings of Eurographics 2002 Tutorials. Eurographics Association, Aire-la-Ville (2002) Google Scholar
  37. 37.
    Hayman, E., Caputo, B., Fritz, M., Eklundh, J.O.: On the significance of real-world conditions for material classification. In: Proceedings of the 8th European Conference on Computer Vision (ECCV 2004), Prague, Czech Republic. Lecture Notes in Computer Science, vol. 3024, pp. 253–266. Springer, Berlin (2004) Google Scholar
  38. 38.
    He, D.C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 28(4), 509–512 (1990) CrossRefGoogle Scholar
  39. 39.
    He, D.C., Wang, L.: Texture features based on texture spectrum. Pattern Recognit. 24(5), 391–399 (1991) CrossRefGoogle Scholar
  40. 40.
    He, D.C., Wang, L.: Unsupervised textural classification of images using the texture spectrum. Pattern Recognit. 25(3), 247–255 (1992) MATHCrossRefGoogle Scholar
  41. 41.
    He, Y., Sang, N.: Robust illumination invariant texture classification using gradient local binary patterns. In: Proceedings of 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, Xiamen, China, pp. 1–6 (2011) CrossRefGoogle Scholar
  42. 42.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with center-symmetric local binary patterns. In: Kalra, P.K., Peleg, S. (eds.) Proceedings of the 5th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2006), Madurai, India. Lecture Notes in Computer Science, vol. 4338, pp. 58–69 (2006) Google Scholar
  43. 43.
    Heikkilä, J., Ojansivu, V., Rahtu, E.: Improved blur insensitivity for decorrelated local phase quantization. In: Proceedings of the 20th International Conference on Pattern Recognition (ICPR 2010), vol. 5099, pp. 818–821 (2010) Google Scholar
  44. 44.
    HEP: Code, data and results related to this paper (2012). Available online at. http://webs.uvigo.es/antfdez/downloads.html/
  45. 45.
    Hepplewhite, L., Stonhamm, T.J.: Texture classification using N-tuple pattern recognition. In: Proceedings of the 13th International Conference on Pattern Recognition (ICPR’96), vol. 4, pp. 159–163 (1996). doi:10.1109/ICPR.1996.547253 CrossRefGoogle Scholar
  46. 46.
    Huang, Y., Wang, Y., Tan, T.: Combining statistics of geometrical and correlative features for 3D face recognition. In: Proceedings of the 17th British Machine Vision Conference, pp. 879–888 (2006) Google Scholar
  47. 47.
    Huang, D., Ardabilian, M., Wang, Y., Chen, L.: A novel geometric facial representation based on multi-scale extended local binary patterns. In: Proceedings of the 9th IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG 2011), pp. 1–7 (2011) Google Scholar
  48. 48.
    Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 41(6), 765–781 (2011) CrossRefGoogle Scholar
  49. 49.
    Jerry Wu database (2003). Available online at http://www.macs.hw.ac.uk/texturelab/resources/databases/jwdb/
  50. 50.
    Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proceedings of the 3rd International Conference on Image and Graphics, pp. 306–309 (2004). doi:10.1109/ICIG.2004.62 Google Scholar
  51. 51.
    Jin, H., Liu, Q., Tang, X., Lu, H.: Learning local descriptors for face detection. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 928–931. IEEE Comput. Soc., Los Alamitos (2005). doi:10.1109/ICME.2005.1521576 Google Scholar
  52. 52.
    Junding, S., Shisong, Z., Xiaosheng, W.: Image retrieval based on an improved CS-LBP descriptor. In: Proceedings of the 2nd IEEE International Conference on Information Management and Engineering (ICIME), Chengdu, China, pp. 115–117 (2010) Google Scholar
  53. 53.
    Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 604–610 (2005) CrossRefGoogle Scholar
  54. 54.
    Kandaswamy, U., Schuckers, S.A., Adjeroh, D.: Comparison of texture analysis schemes under nonideal conditions. IEEE Trans. Image Process. 20(8), 2260–2275 (2011) MathSciNetCrossRefGoogle Scholar
  55. 55.
    Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machines for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1542–1550 (2002) CrossRefGoogle Scholar
  56. 56.
    Kirsanova, E.N., Sadovsky, M.G.: Entropy approach in the analysis of anisotropy of digital images. Open Syst. Inf. Dyn. 84, 239–250 (2002) CrossRefGoogle Scholar
  57. 57.
    KTH-TIPS and KTH-TIPS2 databases (2004). Available online at http://www.nada.kth.se/cvap/databases/kth-tips/
  58. 58.
    Kung, S.Y., Taur, J.S.: Decision-based neural networks with signal/image classification applications. IEEE Trans. Neural Netw. 6(1), 170–181 (1995). doi:10.1109/72.363439 CrossRefGoogle Scholar
  59. 59.
    Kunttu, I., Lepistö, L., Rauhamaa, J., Visa, A.: Image retrieval without segmentation. In: Proceedings of the 10th Finnish Artificial Intelligence Conference, pp. 164–169 (2002) Google Scholar
  60. 60.
    Kunttu, I., Lepistö, L., Rauhamaa, J., Visa, A.: Binary co-occurrence matrix in image database indexing. In: Proceedings of the 13th Scandinavian Conference on Image Analysis (SCIA 2003), Halmstad, Sweden. Lecture Notes in Computer Science, vol. 2749, pp. 1090–1097. Springer, Berlin (2003) Google Scholar
  61. 61.
    Kurmyshev, E.V., Cervantes, M.: A quasi-statistical approach to digital binary image representation. Rev. Mex. Fis. 42(1), 104–116 (1996) MathSciNetGoogle Scholar
  62. 62.
    Kurmyshev, E.V., Guillén-Bonilla, J.T.: Complexity reduced coding of binary pattern units in image classification. Opt. Lasers Eng. 49(6), 718–722 (2011) CrossRefGoogle Scholar
  63. 63.
    Lategahn, H., Gross, S., Stehle, T., Aach, T.: Texture classification by modeling joint distributions of local patterns with Gaussian mixtures. IEEE Trans. Image Process. 19(6), 1548–1557 (2010) MathSciNetCrossRefGoogle Scholar
  64. 64.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005) CrossRefGoogle Scholar
  65. 65.
    LBP-Bibliography. Available online at http://www.ee.oulu.fi/mvg/page/lbp_bibliography/
  66. 66.
    Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003) MATHCrossRefGoogle Scholar
  67. 67.
    Li, S., Kwok, J.T., Zhu, H., Wang, Y.: Texture classification using the support vector machines. Pattern Recognit. 36, 2883–2893 (2003) MATHCrossRefGoogle Scholar
  68. 68.
    Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009) CrossRefGoogle Scholar
  69. 69.
    Lindsey, C.S., Strömberg, M.: Image classification using the frequencies of simple features. Pattern Recognit. Lett. 21, 265–268 (2000) CrossRefGoogle Scholar
  70. 70.
    Liu, L., Zhao, L., Longa, Y., Kuanga, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012). doi:10.1016/j.imavis.2012.01.001 CrossRefGoogle Scholar
  71. 71.
    Madrid-Cuevas, F.J., Medina, R., Prieto, M., Fernández, N.L., Carmona, A.: Simplified texture unit: a new descriptor of the local texture in gray-level images. In: López, F.J.P., Campilho, A.C., de la Blanca, N.P., Sanfeliu, A. (eds.) Pattern Recognition and Image Analysis, Proceedings of the First Iberian Conference (IbPRIA 2003). Lecture Notes in Computer Science, vol. 2652, pp. 470–477. Springer, Berlin (2003) Google Scholar
  72. 72.
    Mondial Marmi database (2011). Available online at http://dismac.dii.unipg.it/mm/ver_1_1/index.html/
  73. 73.
    Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 2nd edn. Wiley, New York (1999) Google Scholar
  74. 74.
    Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010) CrossRefGoogle Scholar
  75. 75.
    Nanni, L., Brahnam, S., Lumini, A.: A local approach based on a Local Binary Patterns variant texture descriptor for classifying pain states. Expert Syst. Appl. 37(12), 7888–7894 (2010) CrossRefGoogle Scholar
  76. 76.
    Nanni, L., Brahnam, S., Lumini, A.: Selecting the best performing rotation invariant patterns in local binary/ternary patterns. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV’10), Las Vegas, USA, pp. 369–375 (2010) Google Scholar
  77. 77.
    Nanni, L., Brahnam, S., Lumini, A.: Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012) CrossRefGoogle Scholar
  78. 78.
    Nixon, M., Aguado, A.: Feature Extraction & Image Processing. Academic Press, Oxford (2008) Google Scholar
  79. 79.
    Ohanian, P.P., Dubes, R.C.: Performance evaluation for four classes of textural features. Pattern Recognit. 25(8), 819–833 (1992) CrossRefGoogle Scholar
  80. 80.
    Oja, E., Valkealahti, K.: Co-occurrence map: quantizing multidimensional texture histograms. Pattern Recognit. Lett. 17(7), 723–730 (1996) CrossRefGoogle Scholar
  81. 81.
    Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 582–585 (1994). doi:10.1109/ICPR.1994.576366 CrossRefGoogle Scholar
  82. 82.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29(1), 51–59 (1996) CrossRefGoogle Scholar
  83. 83.
    Ojala, T., Pietikäinen, M., Kyllönen, J.: Gray level cooccurrence histograms via learning vector quantization. In: Proceedings of the 11th Scandinavian Conference on Image Analysis (SCIA 1999), Kangerlussuaq, Greenland, pp. 103–108 (1999) Google Scholar
  84. 84.
    Ojala, T., Valkealahti, K., Oja, E., Pietikäinen, M.: Texture discrimination with multidimensional distributions of signed gray level differences. Pattern Recognit. 34, 727–739 (2001) MATHCrossRefGoogle Scholar
  85. 85.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002) CrossRefGoogle Scholar
  86. 86.
    Ojala, T., Pietikäinen, M., Mäenpää, T., Viertola, J., Kyllönen, J., Huovinen, S.: Outex—new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), Quebec, Canada, vol. 1, pp. 701–706. IEEE Comput. Soc., Los Alamitos (2002) Google Scholar
  87. 87.
    Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Proceedings of the International Conference on Image and Signal Processing (ICISP 2008). Lecture Notes in Computer Science, vol. 5099, pp. 236–243. Springer, Berlin (2008) Google Scholar
  88. 88.
    OuTeX database (2002). Available online at http://www.outex.oulu.fi/
  89. 89.
    Paclík, P., Verzakov, S., Duin, R.P.W.: Improving the maximum-likelihood co-occurrence classifier: a study on classification of inhomogeneous rock images. In: Proceedings of the 14th Scandinavian Conference on Image Analysis (SCIA 2005). Lecture Notes in Computer Science, vol. 3540, pp. 998–1008. Springer, Berlin (2005) Google Scholar
  90. 90.
    Patel, D., Stonham, T.J.: A single layer neural network for texture discrimination. In: IEEE International Symposium on Circuits and Systems, 1991, vol. 5, pp. 2656–2660 (1991). doi:10.1109/ISCAS.1991.176092 Google Scholar
  91. 91.
    Patel, D., Stonham, T.J.: Texture image classification and segmentation using rank-order clustering. In: Proceedings of the 11th International Conference on Pattern Recognition (ICPR’92), vol. 3, pp. 92–95. IEEE Comput. Soc., Los Alamitos (1992) Google Scholar
  92. 92.
    Patel, D., Stonham, T.J.: Unsupervised/supervised texture segmentation and its application to real-world data. In: Maragos, P. (ed.) Proceedings of SPIE’s Visual Communications and Image Processing’92, vol. 1818, pp. 1206–1217. SPIE, Boston (1992). doi:10.1117/12.131392 Google Scholar
  93. 93.
    Patel, D., Stonham, T.J.: Segmentation of potash mine images using multi-layer perceptron networks. In: Proceedings of the Second International Conference on Automation, Robotics and Computer Vision (ICARCV’92), Singapore (1992) Google Scholar
  94. 94.
    Petrou, M., García, S.P.: Image Processing. Dealing with Texture. Wiley-Interscience, New York (2006) CrossRefGoogle Scholar
  95. 95.
    Pietikäinen, M., Ojala, T., Nisula, J., Heikkinen, J.: Experiments with two industrial problems using texture classification based on feature distributions. In: Proceedings of SPIE, vol. 2354, pp. 197–204 (1994) Google Scholar
  96. 96.
    Qian, X., Hua, X.S., Cheng, P., Ke, L.: PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit. 44, 2502–2515 (2011) CrossRefGoogle Scholar
  97. 97.
    Rajpoot, K.M., Rajpoot, N.M.: Wavelets and support vector machines for texture classification. In: Proceedings of 8th International Multitopic Conference (INMIC 2004), pp. 328–333 (2004) CrossRefGoogle Scholar
  98. 98.
    Sabeenian, R.S., Dinesh, P.M.: Texture image classification using gray level weight matrix (GLWM). In: Proceedings of the Second International Conference on Advances in Power Electronics and Instrumentation Engineering (PEIE2011), Maharashtra, India. Communications in Computer and Information Sciences, vol. 148, pp. 263–266. Springer, Berlin (2011) Google Scholar
  99. 99.
    Sánchez-Yáñez, R.E., Kurmyshev, E.V., Cuevas, F.J.: A framework for texture classification using the coordinated clusters representation. Pattern Recognit. Lett. 24(1–3), 21–31 (2003). doi:10.1016/S0167-8655(02)00185-X MATHCrossRefGoogle Scholar
  100. 100.
    Sebe, N., Lew, M.: Robust Computer Vision. Theory and Applications. Kluwer Academic, Dordrecht (2003) MATHGoogle Scholar
  101. 101.
    Singh, M., Singh, S.: Spatial texture analysis: a comparative study. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), vol. 1, pp. 676–679. IEEE Comput. Soc., Los Alamitos (2002). doi:10.1109/ICPR.2002.1044843 Google Scholar
  102. 102.
    Smith, G., Burns, I.: Measuring texture classification algorithms. Pattern Recognit. Lett. 18(14), 1495–1501 (1997) MATHCrossRefGoogle Scholar
  103. 103.
    Sommerville, D.M.Y.: An Introduction to the Geometry of n Dimensions. Methuen, London (1929) MATHGoogle Scholar
  104. 104.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, 3rd edn. Thompson, Washington (2005) Google Scholar
  105. 105.
    Suguna, R., Anandhakumar, P.: Multi-level local binary pattern analysis for texture characterization. Int. J. Comput. Sci. Netw. Secur. 10(4), 375–386 (2011) Google Scholar
  106. 106.
    Sun, H., Wang, C., Wang, B., El-Sheimy, N.: Pyramid binary pattern features for real-time pedestrian detection from infrared videos. Neurocomputing 74, 797–804 (2011) CrossRefGoogle Scholar
  107. 107.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and Modelling of Faces and Gestures. Lecture Notes in Computer Science, vol. 4778, pp. 168–182. Springer, Berlin (2007) CrossRefGoogle Scholar
  108. 108.
    Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific, Singapore (1998) Google Scholar
  109. 109.
    UIUCTex texture database (2005). Available online at http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/
  110. 110.
    Unser, M.: Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(1), 118–125 (1986) CrossRefGoogle Scholar
  111. 111.
    Unser, M.: Local linear transforms for texture measurements. Signal Process. 11(1), 61–79 (1986) MathSciNetCrossRefGoogle Scholar
  112. 112.
    USC-SIPI image database (1977). Available online at http://sipi.usc.edu/database/
  113. 113.
    Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 90–94 (1998) CrossRefGoogle Scholar
  114. 114.
    Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, pp. 691–698 (2003). doi:10.1109/CVPR.2003.1211534 Google Scholar
  115. 115.
    Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009) CrossRefGoogle Scholar
  116. 116.
    Vickers, A.L., Modestino, J.W.: A maximum likelihood approach to texture classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(1), 61–68 (1982). doi:10.1109/TPAMI.1982.4767197 CrossRefGoogle Scholar
  117. 117.
    VisTex database (2002). Available online at http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
  118. 118.
    Wang, L., He, D.C.: A new statistical approach for texture analysis. Photogramm. Eng. Remote Sens. 56(1), 61–66 (1990) Google Scholar
  119. 119.
    Wang, Y., Wei, X., Xiao, S.: LBP texture analysis based on the local adaptive Niblack algorithm. In: Proceedings of the Congress on Image and Signal Processing, 2008 (CISP’08), vol. 2, pp. 777–780 (2008) CrossRefGoogle Scholar
  120. 120.
    Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Trans. Syst. Man Cybern. 6(4), 269–286 (1976) MATHGoogle Scholar
  121. 121.
    Wiselin Jiji, G., Ganesan, L.: Comparative analysis of colour models for colour textures based on feature extraction. Int. J. Soft Comput. 2, 361–366 (2007) Google Scholar
  122. 122.
    Wiselin Jiji, G., Ganesan, L.: A new approach for unsupervised segmentation. Appl. Soft Comput. 10(3), 689–693 (2010) CrossRefGoogle Scholar
  123. 123.
    Wiselin Jiji, G.: Colour texture classification for human tissue images. Appl. Soft Comput. 11(2), 1623–1630 (2011) CrossRefGoogle Scholar
  124. 124.
    Wu, J.: Rotation invariant classification of 3D surface texture using photometric stereo. Ph.D. Thesis, Heriot-Watt University (2003) Google Scholar
  125. 125.
    Wu, X., Sun, J.: A brief study on a novel texture spectrum descriptor for material images. Appl. Mech. Mater. 63–64, 507–510 (2011) CrossRefGoogle Scholar
  126. 126.
    Xiaosheng, W., Junding, S.: An effective texture spectrum descriptor. In: Proceedings of the 5th International Conference on Information Assurance and Security, (IAS 2009), Xi’an, China, vol. 2, pp. 361–364 (2009) Google Scholar
  127. 127.
    Xie, X., Mirmehdi, M.: A galaxy of texture features. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of texture analysis, pp. 375–406. Imperial College Press, London (2008) CrossRefGoogle Scholar
  128. 128.
    Xu, B., Gong, P., Seto, E., Spear, R.: Comparison of gray-level reduction and different texture spectrum encoding methods for land-use classification using a panchromatic Ikonos image. Photogramm. Eng. Remote Sens. 69(5), 529–536 (2003) Google Scholar
  129. 129.
    Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the 3rd European Conference on Computer Vision (ECCV 1994), Stockholm, Sweden, pp. 151–158. Springer, Berlin (1994) Google Scholar
  130. 130.
    Zeng, H.: A robust method for local image feature region description. Acta Autom. Sinica 37(6), 658–664 (2011). In Chinese Google Scholar
  131. 131.
    Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007) CrossRefGoogle Scholar
  132. 132.
    Zhou, H., Wang, R., Wang, C.: A novel extended local-binary-pattern operator for texture analysis. Inf. Sci. 178(22), 4314–4325 (2008). doi:10.1016/j.ins.2008.07.015 MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Antonio Fernández
    • 1
  • Marcos X. Álvarez
    • 2
  • Francesco Bianconi
    • 3
  1. 1.School of Industrial EngineeringUniversity of VigoVigoSpain
  2. 2.School of Mining EngineeringUniversity of VigoVigoSpain
  3. 3.Department of Industrial EngineeringUniversity of PerugiaPerugiaItaly

Personalised recommendations