Advertisement

Journal of Mathematical Imaging and Vision

, Volume 44, Issue 3, pp 463–479 | Cite as

Full Multiresolution Active Shape Models

  • Juan J. Cerrolaza
  • Arantxa Villanueva
  • Federico M. Sukno
  • Constantine Butakoff
  • Alejandro F. Frangi
  • Rafael Cabeza
Article

Abstract

The incorporation of a multiresolution image approach is one of the most popular variants of Active Shape Models (ASMs), providing a more robust algorithm and minimizing its initialization dependency. Using the wavelet transform, the present paper extends the multiresolution analysis to the shape space, developing a novel multiresolution shape framework, capable of being incorporated into most of ASM variants. The tests performed with two different types of images, face images (AR database) and chest radiographs (JSRT database), demonstrate how this new generation of algorithms significantly reduce the computational cost, more than halving it, while maintaining the same levels of accuracy.

Keywords

Active shape model Multiresolution analysis Medical image segmentation Wavelet transform 

Notes

Acknowledgements

The work described in this study was supported by the Spanish Ministry of Science and Innovation with an FPU grant (AP2007-03931). This work was also partially supported by the Spanish Ministry of Science and Innovation (Ref. TIN2009-14536-C02-01), Plan E and FEDER.

References

  1. 1.
    Al-Shaher, A.A., Hancock, E.R.: Learning mixtures of point distribution models with the em algorithm. Pattern Recognit. 36(12), 2805–2818 (2003) zbMATHCrossRefGoogle Scholar
  2. 2.
    Allen, P.D., Graham, J., Farnell, D.J.J., Harrison, E.J., Jacobs, R., Nicopolou-Karayianni, K., Lindh, C., van der Stelt, P.F., Horner, K., Devlin, H.: Detecting reduced bone mineral density from dental radiographs using statistical shape models. IEEE Trans. Inf. Technol. Biomed. 11(6), 601–610 (2007) CrossRefGoogle Scholar
  3. 3.
    van Assen, H.C., Danilouchkine, M.G., Frangi, A.F., Ordás, S., Westenberg, J.J.M., Reiber, J.H.C., Lelieveldt, B.P.F.: Spasm: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med. Image Anal. 10(2), 286–303 (2003) CrossRefGoogle Scholar
  4. 4.
    van den Berg, J.C. (ed.): Wavelets in Physics. Cambridge University Press, Cambridge (1999) Google Scholar
  5. 5.
    Böhm, W.: Cubic B-Spline curves and surfaces in computer aided geometric design. Computing 19(1), 29–34 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Burt, P.: The Pyramid as a structure for efficient computation. In: Multi-Resolution Image Processing and Analysis. Springer, Berlin (1984) Google Scholar
  7. 7.
    Cerrolaza, J., Villanueva, A., Cabeza, R.: Shape constraint strategies: novel approaches and comparative robustness. In: Proc. British Machine Vision Conf. (BMVC’11) (2011) Google Scholar
  8. 8.
    Cheung, K.W., Yeung, D.Y., Chin, R.T.: On deformable models for visual pattern recognition. Pattern Recognit. 35(7), 1507–1526 (2002) zbMATHCrossRefGoogle Scholar
  9. 9.
    Chuang, G.C.H., Kuo, C.C.J.: Wavelet descriptor of planar curves: theory and applications. IEEE Trans. Image Process. 5(1), 56–70 (1996) CrossRefGoogle Scholar
  10. 10.
    Cootes, T.F., Taylor, C.J., Lanitis, A.: In: Active Shape Models: Evaluation of a Multi-resolution Method for Improving Image Search, pp. 327–336 (1994) Google Scholar
  11. 11.
    Cootes, T.F., Taylor, C.J.: Active shape models: A review of recent work. In: Current Issues in Statistical Shape Analysis, pp. 108–114. Leeds University Press, Leeds (1995) Google Scholar
  12. 12.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Tech. rep., Department of Imaging Science and Biomedical Engineering, University of Manchester (2004). Available from http://www.isbe.man.ac.uk/~bim/Models/appmodels.pdf
  13. 13.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995) CrossRefGoogle Scholar
  14. 14.
    Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992) zbMATHCrossRefGoogle Scholar
  15. 15.
    Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models, using the wavelet transform. IEEE Trans. Med. Imaging 22(3), 414–423 (2003) CrossRefGoogle Scholar
  16. 16.
    Davies, R.H., Twining, C.J., Cootes, T.F., Taylor, C.J.: Building 3-D statistical shape models by direct optimization. IEEE Trans. Med. Imaging 29(4), 961–981 (2010) CrossRefGoogle Scholar
  17. 17.
    Deubler, J., Olivo, J.C.: A wavelet-based multiresolution method to automatically register images. J. Math. Imaging Vis. 7, 199–209 (1997) CrossRefGoogle Scholar
  18. 18.
    Duta, N., Sonka, M.: Segmentation and interpretation of MR brain images: an improved active shape model. IEEE Trans. Med. Imaging 17(6), 1049–1062 (1998) CrossRefGoogle Scholar
  19. 19.
    Farin, G.E., Hansford, D.: The Essential of CAGD. AK Peters, Wellesley (2000) Google Scholar
  20. 20.
    Feng, J., Ip, H.H.: A multi-resolution statistical deformable model (misto) for soft-tissue organ reconstruction. Pattern Recognit. 42(7), 1543–1558 (2009) CrossRefGoogle Scholar
  21. 21.
    Finkelstein, A., Salesin, D.H.: Multiresolution curves. In: SIGGRAPH, pp. 261–268. ACM, New York (1994) Google Scholar
  22. 22.
    Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Med. Imaging 21(9), 1151–1166 (2002) CrossRefGoogle Scholar
  23. 23.
    Garrido, A., Blanca, N.P.D.L.: Physically-based active shape models: initialization and optimization. Pattern Recognit. 31(8), 1003–1017 (1998) CrossRefGoogle Scholar
  24. 24.
    van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Trans. Med. Imaging 21(8), 924–933 (2002) CrossRefGoogle Scholar
  25. 25.
    van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006) CrossRefGoogle Scholar
  26. 26.
    Gortler, S.J., Cohen, M.F.: Hierarchical and variational geometric modeling with wavelets. Tech. rep., Department of Computer Science Princeton University (1995). Available from http://www.cs.harvard.edu/~sjg/papers/TR-95-25.ps
  27. 27.
    Goswami, J.C., Chan, A.K.: Fundamentals of Wavelets: Theory, Algorithms, and Applications. Wiley-Interscience, New York (1999) zbMATHGoogle Scholar
  28. 28.
    Hamarneh, G., Gustavsson, T.: Deformable spatio-temporal shape models: extending active shape models to 2D+time. Image Vis. Comput. 22(6), 461–470 (2004). doi: 10.1016/j.imavis.2003.11.009 CrossRefGoogle Scholar
  29. 29.
    Hoogendoorn, C., Sukno, F.M., Ordás, S., Frangi, A.F.: Bilinear models for spatio-temporal point distribution analysis. Int. J. Comput. Vis. 85, 237–252 (2009) CrossRefGoogle Scholar
  30. 30.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic interpretation and coding of face images using flexible models. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 743–756 (1997) CrossRefGoogle Scholar
  31. 31.
    Leduc, J.P.: A group-theoretic construction with spatiotemporal wavelets for the analysis of rotational motion. J. Math. Imaging Vis. 17, 207–236 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Lee, S.W., Kang, J., Shin, J., Paik, J.: Hierarchical active shape model with motion prediction for real-time tracking of non-rigid objects. IET Comput. Vis. 1(1), 17–24 (2007) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Li, H., Chutatape, O.: Boundary detection of optic disk by a modified asm method. Pattern Recognit. 36(9), 2093–2104 (2003). Kernel and Subspace Methods for Computer Vision zbMATHCrossRefGoogle Scholar
  34. 34.
    Lina, J.M.: Image processing with complex Daubechies wavelets. J. Math. Imaging Vis. 7, 211–223 (1997) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ling, H., Zhou, S., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.: Hierarchical, learning-based automatic liver segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8 (2008). doi: 10.1109/CVPR.2008.4587393 Google Scholar
  36. 36.
    Liu, C., Shum, H.Y., Zhang, C.: Hierarchical shape modeling for automatic face localization. In: ECCV’02: Proc. 7th European Conf. Comp. Vis. II, pp. 687–703. Springer, London (2002) Google Scholar
  37. 37.
    Lohakan, M., Nantivatana, P., Narkbuakaew, W., Pintavirooj, C., Sangworasil, M.: Multiresolution image alignment based on discrete wavelet transform. In: IEEE Reg. 10 TENCON (2005), pp. 1–4 (2005) CrossRefGoogle Scholar
  38. 38.
    Lounsbery, M., DeRose, T., Warren, J.: Multiresolution surfaces of arbitrary topological type. Tech. rep., Department of Computer Science and Engineering, University of Washington (1994) Google Scholar
  39. 39.
    Lounsbery, M., DeRose, T.D., Warren, J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16(1), 34–73 (1997) CrossRefGoogle Scholar
  40. 40.
    Lounsbery, M., DeRose, T.D., Warren, J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16, 34–73 (1997) CrossRefGoogle Scholar
  41. 41.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989) zbMATHCrossRefGoogle Scholar
  42. 42.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). doi: 10.1109/34.192463 zbMATHCrossRefGoogle Scholar
  43. 43.
    Martinez, A., Benavente, R.: The ar face database. Tech. rep., Computer Vision Center, Universitat Autònoma de Barcelona (1998). Available from http://www.cat.uab.cat/Publications/1998/MB98/CVCReport24.pdf
  44. 44.
    Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 789–805 (1992) CrossRefGoogle Scholar
  45. 45.
    Olsen, L., Samavati, F.F., Bartels, R.H.: Multiresolution for curves and surfaces based on constraining wavelets. Comput. Graph. 31(3), 449–462 (2007) CrossRefGoogle Scholar
  46. 46.
    Samavati, F.F.: Local filters of b-spline wavelets. In: Proc. of Int. Workshop Biometric Tech. (2004), pp. 105–110 (2004) Google Scholar
  47. 47.
    Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K., Matsui, M., Fujita, H., Kodera, Y., Doi, K.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174, 71–74 (2000) Google Scholar
  48. 48.
    Singh, S.P.: Approximation Theory, Wavelets and Applications. Springer, Berlin (2009) Google Scholar
  49. 49.
    Stegmann, M.B., Fisker, R., Ersbøll, B.K.: On properties of active shape models. Tech. rep., Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby (2000). Available from http://www2.imm.dtu.dk/pubdb/views/edocdownload.php/125/pdf/imm125.pdf
  50. 50.
    Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann, San Francisco (1996) Google Scholar
  51. 51.
    Sukno, F.M., Frangi, A.F.: Reliability estimation for statistical shape models. IEEE Trans. Image Process. 17(12), 2442–2455 (2008) MathSciNetCrossRefGoogle Scholar
  52. 52.
    Sukno, F.M., Ordas, S., Butakoff, C., Cruz, S., Frangi, A.F.: Active shape models with invariant optimal features: application to facial analysis. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1105–1117 (2007). doi: 10.1109/TPAMI.2007.1041 CrossRefGoogle Scholar
  53. 53.
    Taylor, C.J., Cooper, D.H., Graham, J.: Training models of shape from sets of examples. In: Proc. British Machine Vision Conf., pp. 9–18. Springer, London (1992) Google Scholar
  54. 54.
    Zavadsky, V.: Image approximation by rectangular wavelet transform. J. Math. Imaging Vis. 27, 129–138 (2007) MathSciNetCrossRefGoogle Scholar
  55. 55.
    Zhang, H.M., Wang, Z., Han, L., Li, D.: Locating the starting point of closed contour based on half-axes-angle. In: Proc. Int. Conf. Machine Learning and Cyber (2004), pp. 3899–3903 (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Juan J. Cerrolaza
    • 1
  • Arantxa Villanueva
    • 1
  • Federico M. Sukno
    • 3
    • 4
  • Constantine Butakoff
    • 2
  • Alejandro F. Frangi
    • 2
  • Rafael Cabeza
    • 1
  1. 1.Department of Electrical and Electronic EngineeringPublic University of NavarraPamplonaSpain
  2. 2.Research Group for Computational Imaging and Simulation Technologies in BiomedicineUniversitat Pompeu FabraBarcelonaSpain
  3. 3.Centre for Image Processing & AnalysisDublin City UniversityDublin 9Ireland
  4. 4.Molecular & Cellular TherapeuticsRoyal College of Surgeons in IrelandDublin 2Ireland

Personalised recommendations