Journal of Mathematical Imaging and Vision

, Volume 44, Issue 1, pp 19–37 | Cite as

Digital Imaging: A Unified Topological Framework

  • Loïc Mazo
  • Nicolas Passat
  • Michel Couprie
  • Christian Ronse


In this article, a tractable modus operandi is proposed to model a (binary) digital image (i.e., an image defined on ℤ n and equipped with a standard pair of adjacencies) as an image defined in the space (\(\mathbb{F}^{n}\)) of cubical complexes. In particular, it is shown that all the standard pairs of adjacencies (namely the (4,8) and (8,4)-adjacencies in ℤ2, the (6,18), (18,6), (6,26), and (26,6)-adjacencies in ℤ3, and more generally the (2n,3 n −1) and (3 n −1,2n)-adjacencies in ℤ n ) can then be correctly modelled in \(\mathbb{F}^{n}\). Moreover, it is established that the digital fundamental group of a digital image in ℤ n is isomorphic to the fundamental group of its corresponding image in \(\mathbb{F}^{n}\), thus proving the topological correctness of the proposed approach. From these results, it becomes possible to establish links between topology-oriented methods developed either in classical digital spaces (ℤ n ) or cubical complexes (\(\mathbb{F}^{n}\)), and to potentially unify some of them.


Digital imaging Digital topology Cubical complexes Homotopy Fundamental group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966) MATHCrossRefGoogle Scholar
  2. 2.
    Duda, O., Hart, P.E., Munson, J.H.: Graphical data processing research study and experimental investigation. Tech. Rep. AD650926, Stanford Research Institute (1967) Google Scholar
  3. 3.
    Rosenfeld, A.: Connectivity in digital pictures. J. ACM 17(1), 146–160 (1970) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kong, T.Y.: A digital fundamental group. Comput. Graph. 13(2), 159–166 (1989) CrossRefGoogle Scholar
  5. 5.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989) CrossRefGoogle Scholar
  6. 6.
    Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36(1), 1–17 (1990) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46(2), 141–161 (1989) CrossRefGoogle Scholar
  8. 8.
    Bertrand, G.: New notions for discrete topology. In: Discrete Geometry for Computer Imagery—DGCI 1999. Lecture Notes in Computer Science, vol. 1568, pp. 218–228. Springer, Berlin (1999) CrossRefGoogle Scholar
  9. 9.
    Artzy, E., Frieder, G., Herman, G.T.: The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Comput. Graph. Image Process. 15(1), 1–24 (1981) CrossRefGoogle Scholar
  10. 10.
    Herman, G.T.: Oriented surfaces in digital spaces. CVGIP, Graph. Models Image Process. 55(5), 381–396 (1993) CrossRefGoogle Scholar
  11. 11.
    Udupa, J.K.: Multidimensional digital boundaries. CVGIP, Graph. Models Image Process. 56(4), 311–323 (1994) CrossRefGoogle Scholar
  12. 12.
    Lachaud, J.-O., Vialard, A.: Geometric measures on arbitrary dimensional digital surfaces. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 2886, pp. 434–443. Springer, Berlin (2003) CrossRefGoogle Scholar
  13. 13.
    Damiand, G., Peltier, S., Fuchs, L.: Computing homology for surfaces with generalized maps: Application to 3d images. In: Advances in Visual Computing. Lecture Notes in Computer Science, vol. 4292, pp. 235–244. Springer, Berlin (2006) CrossRefGoogle Scholar
  14. 14.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognit. Lett. 15(2), 169–175 (1994) MATHCrossRefGoogle Scholar
  15. 15.
    Bertrand, G.: A Boolean characterization of three-dimensional simple points. Pattern Recognit. Lett. 17(2), 115–124 (1996) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Malgouyres, R., Lenoir, A.: Topology preservation within digital surfaces. Graph. Models 62(2), 71–84 (2000) CrossRefGoogle Scholar
  17. 17.
    Fourey, S., Malgouyres, R.: A concise characterization of 3D simple points. Discrete Appl. Math. 125(1), 59–80 (2003) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 637–648 (2009) CrossRefGoogle Scholar
  19. 19.
    Cointepas, Y., Bloch, I., Garnero, L.: A cellular model for multi-objects multi-dimensional homotopic deformations. Pattern Recognit. 34(9), 1785–1798 (2001) MATHCrossRefGoogle Scholar
  20. 20.
    Daragon, X., Couprie, M.: Segmentation du néo-cortex cérébral depuis des données IRM dans le cadre de la topologie des ordres. In: Reconnaissance de Formes et Intelligence Artificielle—RFIA 2002, vol. 3, pp. 809–818 (2002) Google Scholar
  21. 21.
    Bertrand, G., Couprie, M.: Two-dimensional thinning algorithms based on critical kernels. J. Math. Imaging Vis. 31(1), 35–56 (2008) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003) CrossRefGoogle Scholar
  23. 23.
    Bai, Y., Han, X., Prince, J.: Digital topology on adaptive octree grids. J. Math. Imaging Vis. 34(2), 165–184 (2009) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5(4), 297–318 (1995) CrossRefGoogle Scholar
  25. 25.
    Dokládal, P., Lohou, C., Perroton, L., Bertrand, G.: Liver blood vessels extraction by a 3-D topological approach. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 1999. Lecture Notes in Computer Science, vol. 1679, pp. 98–105. Springer, Berlin (1999) CrossRefGoogle Scholar
  26. 26.
    Aktouf, Z., Bertrand, G., Perroton, L.: A three-dimensional holes closing algorithm. Pattern Recognit. Lett. 23(5), 523–531 (2002) MATHCrossRefGoogle Scholar
  27. 27.
    Passat, N., Ronse, C., Baruthio, J., Armspach, J.-P., Bosc, M., Foucher, J.: Using multimodal MR data for segmentation and topology recovery of the cerebral superficial venous tree. In: International Symposium on Visual Computing—ISVC 2005. Lecture Notes in Computer Science, vol. 3804, pp. 60–67. Springer, Berlin (2005) Google Scholar
  28. 28.
    Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology-preserving warping of binary images according to one-to-one mappings. IEEE Trans. Image Process 20(8), 2135–2145 (2011) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kong, T.Y., Roscoe, A.W.: A theory of binary digital images. Comput. Vis. Graph. Image Process. 32(2), 221–243 (1985) MATHCrossRefGoogle Scholar
  30. 30.
    Ayala, R., Domínguez, E., Francés, A., Quintero, A.: Digital lighting functions. In: Discrete Geometry for Computer Imagery—DGCI 1997. Lecture Notes in Computer Science, vol. 1347, pp. 139–150. Springer, Berlin (1997) Google Scholar
  31. 31.
    Lachaud, J.-O., Montanvert, A.: Continuous analogs of digital boundaries: A topological approach to iso-surfaces. Graph. Models 62(3), 129–164 (2000) CrossRefGoogle Scholar
  32. 32.
    Alayrangues, S., Lachaud, J.-O.: Equivalence between order and cell complex representations. In: Wildenauer, H., Kropatsch, W. (eds.) Proceedings of the Computer Vision Winter Workshop (CVWW), Bad Aussee, Austria, pp. 222–233 (2002) Google Scholar
  33. 33.
    Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary images. In: Discrete Geometry for Computer Imagery—DGCI 1997. Lecture Notes in Computer Science, vol. 1347, pp. 3–18. Springer, Berlin (1997) Google Scholar
  34. 34.
    Bertrand, G., Couprie, M.: A model for digital topology. In: Discrete Geometry for Computer Imagery—DGCI 1999. Lecture Notes in Computer Science, vol. 1568, pp. 229–241. Springer, Berlin (1999) CrossRefGoogle Scholar
  35. 35.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Homotopy in digital space. In: Discrete Geometry for Computer Imagery—DGCI 2000. Lecture Notes in Computer Science, vol. 1953, pp. 3–14. Springer, Berlin (2000) CrossRefGoogle Scholar
  36. 36.
    Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Digital homotopy with obstacles. Discrete Appl. Math. 139(1–3), 5–30 (2004) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Birkhoff, G.: Lattice Theory, 8th edn. American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society, Providence (1995) Google Scholar
  38. 38.
    Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer, London (2005) MATHGoogle Scholar
  39. 39.
    Munkres, J.: Topology. Prentice Hall, New York (1999) Google Scholar
  40. 40.
    Viro, O.Y., Ivanov, O.A., Netsvetaev, N.Y., Kharlamov, V.M.: Elementary Topology: Problem Textbook. AMS, Providence (2008) MATHGoogle Scholar
  41. 41.
    Maunder, C.R.F.: Algebraic Topology. Dover, New York (1996) Google Scholar
  42. 42.
    May, A.: A Concise Course in Algebraic Topology. U. Chicago Press, Chicago (1999) MATHGoogle Scholar
  43. 43.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  44. 44.
    Passat, N., Mazo, L.: An introduction to simple sets. Pattern Recognit. Lett. 30(15), 1366–1377 (2009) CrossRefGoogle Scholar
  45. 45.
    Mazo, L., Passat, N., Couprie, M., Ronse, C.: Paths, homotopy and reduction in digital images. Acta Appl. Math. 113(2), 167–193 (2011) MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Poupon, F., Mangin, J.-F., Hasboun, D., Poupon, C., Magnin, I.E., Frouin, V.: Multi-object deformable templates dedicated to the segmentation of brain deep structures. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 1998. Lecture Notes in Computer Science, vol. 1496, pp. 1134–1143. Springer, Berlin (1998) CrossRefGoogle Scholar
  47. 47.
    Bazin, P.-L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. Med. Imaging 26(4), 487–496 (2007) CrossRefGoogle Scholar
  48. 48.
    Miri, S., Passat, N., Armspach, J.-P.: Topology-preserving discrete deformable model: Application to multi-segmentation of brain MRI. In: International Conference on Image and Signal Processing—ICISP 2008. Lecture Notes in Computer Science, vol. 5099, pp. 67–75. Springer, Berlin (2008), Google Scholar
  49. 49.
    Latecki, L.J.: 3D well-composed pictures. Graph. Models Image Process. 59(3), 164–172 (1997) CrossRefGoogle Scholar
  50. 50.
    Ségonne, F., Pons, J.-P., Grimson, E., Fischl, B.: A novel level set framework for the segmentation of medical images under topology control. In: ICCV Workshop on Computer Vision for Biomedical Image Applications, pp. 135–145 (2005) CrossRefGoogle Scholar
  51. 51.
    Bazin, P.-L., Ellingsen, L.M., Pham, D.L.: Digital homeomorphisms in deformable registration. In: Information Processing in Medical Imaging—IPMI 2007. Lecture Notes in Computer Science, vol. 4584, pp. 211–222. Springer, Berlin (2007) CrossRefGoogle Scholar
  52. 52.
    Siqueira, M., Latecki, L.J., Tustison, N., Gallier, J., Gee, J.: Topological repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008) MathSciNetCrossRefGoogle Scholar
  53. 53.
    Damiand, G.: Topological model for 3D image representation: Definition and incremental extraction algorithm. Comput. Vis. Image Underst. 109(3), 260–289 (2008) CrossRefGoogle Scholar
  54. 54.
    Damiand, G., Dupas, A., Lachaud, J.-O.: Fully deformable 3D digital partition model with topological control. Pattern Recognit. Lett. 32(9), 1374–1383 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Loïc Mazo
    • 1
    • 2
  • Nicolas Passat
    • 1
  • Michel Couprie
    • 2
  • Christian Ronse
    • 1
  1. 1.Université de Strasbourg, LSIITUMR CNRS 7005Illkirch CedexFrance
  2. 2.Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Équipe A3SIESIEE ParisNoisy le Grand CedexFrance

Personalised recommendations