Journal of Mathematical Imaging and Vision

, Volume 43, Issue 3, pp 206–213 | Cite as

Euclidean Signature Curves



It is well known that two planar curves that are related by a Euclidean transformation possess the same signature curve. Recently Musso and Nicolodi (J. Math. Imaging Vis. 35:68–85, 2009) gave examples of non-congruent curves that possess the same Euclidean signature curve. In this paper we show how to construct all planar curves of class C3 that have a given signature curve.


Euclidean transformations Signature curves Equivalence problems for planar curves Image recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves, and Surfaces. Springer, Berlin (1988) MATHGoogle Scholar
  2. 2.
    Calabi, E., Olver, P., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998) CrossRefGoogle Scholar
  3. 3.
    Fels, M., Olver, P.: Moving coframes: I. A practical algorithm. Acta Appl. Math. 51, 161–213 (1998) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fels, M., Olver, P.: Moving coframes: II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Musso, E., Nicolodi, L.: Invariant signatures of closed planar curves. J. Math. Imaging Vis. 35, 68–85 (2009) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Olver, P.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1995) MATHGoogle Scholar
  7. 7.
    Pressley, A.: Elementary Differential Geometry, 2nd edn. Springer, Berlin (2010) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics & StatisticsUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations