Journal of Mathematical Imaging and Vision

, Volume 43, Issue 2, pp 103–120 | Cite as

Non-local Methods with Shape-Adaptive Patches (NLM-SAP)

  • Charles-Alban Deledalle
  • Vincent DuvalEmail author
  • Joseph Salmon


We propose in this paper an extension of the Non-Local Means (NL-Means) denoising algorithm. The idea is to replace the usual square patches used to compare pixel neighborhoods with various shapes that can take advantage of the local geometry of the image. We provide a fast algorithm to compute the NL-Means with arbitrary shapes thanks to the Fast Fourier Transform. We then consider local combinations of the estimators associated with various shapes by using Stein’s Unbiased Risk Estimate (SURE). Experimental results show that this algorithm improve the standard NL-Means performance and is close to state-of-the-art methods, both in terms of visual quality and numerical results. Moreover, common visual artifacts usually observed by denoising with NL-Means are reduced or suppressed thanks to our approach.


Image denoising Non-local means Spatial adaptivity Aggregation Risk estimation SURE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006) CrossRefGoogle Scholar
  2. 2.
    Awate, S.P., Whitaker, R.T.: Unsupervised information-theoretic, adaptive image filtering for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 364–376 (2006) CrossRefGoogle Scholar
  3. 3.
    Bilcu, R.C., Vehvilainen, M.: Combined non-local averaging and intersection of confident intervals for image de-noising. In: ICIP, pp. 1736–1739 (2008) Google Scholar
  4. 4.
    Blu, T., Luisier, F.: The SURE-LET approach to image denoising. IEEE Trans. Image Process. 16(11), 2778–2786 (2007) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boulanger, J., Kervrann, C., Bouthemy, P., Elbau, P., Sibarita, J.B., Salamero, J.: Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Trans. Med. Imaging 29(2), 442–454 (2010) CrossRefGoogle Scholar
  6. 6.
    Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means for denoising of textural patterns. IEEE Trans. Image Process. 17(7), 1083–1092 (2008) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. Image Processing on Line (2009).
  9. 9.
    Condat, L.: A simple trick to speed up and improve the non-local means. Submitted (2010). hal-00512801 Google Scholar
  10. 10.
    Crow, F.C.: Summed-area tables for texture mapping. In: SIGGRAPH, pp. 207–212 (1984) Google Scholar
  11. 11.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: BM3D image denoising with shape-adaptive principal component analysis. In: Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’09) (2009) Google Scholar
  13. 13.
    Dalalyan, A.S., Tsybakov, A.B.: Aggregation by exponential weighting, sharp oracle inequalities and sparsity. In: COLT, pp. 97–111 (2007) Google Scholar
  14. 14.
    Dalalyan, A.S., Tsybakov, A.B.: Aggregation by exponential weighting sharp pac-bayesian bounds and sparsity. Mach. Learn. 72(1–2), 39–61 (2008) CrossRefGoogle Scholar
  15. 15.
    Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J.: Fast nonlocal filtering applied to electron cryomicroscopy. In: ISBI, pp. 1331–1334 (2008) Google Scholar
  16. 16.
    Deledalle, C.A., Denis, L., Tupin, F.: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Doré, V., Cheriet, M.: Robust NL-means filter with optimal pixel-wise smoothing parameter for statistical image denoising. IEEE Trans. Signal Process. 57, 1703–1716 (2009) CrossRefGoogle Scholar
  19. 19.
    Duval, V., Aujol, J.F., Gousseau, Y.: On the parameter choice for the non-local means. Tech. rep. hal-00468856, HAL (2010) Google Scholar
  20. 20.
    Foi, A., Katkovnik, V., Egiazarian, K.O.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16(5), 1395–1411 (2007) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Goldenshluger, A., Nemirovski, A.S.: On spatially adaptive estimation of nonparametric regression. Math. Methods Stat. 6(2), 135–170 (1997) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Goossens, B., Luong, H.Q., Pizurica, A., Philips, W.: An improved non-local denoising algorithm. In: LNLA, pp. 143–156 (2008) Google Scholar
  24. 24.
    Hudson, H.M.: A natural identity for exponential families with applications in multiparameter estimation. Ann. Stat. 6(3), 473–484 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Katkovnik, V., Foi, A., Egiazarian, K.O., Astola, J.T.: Directional varying scale approximations for anisotropic signal processing. In: EUSIPCO, pp. 101–104 (2004) Google Scholar
  26. 26.
    Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 15(10), 2866–2878 (2006) CrossRefGoogle Scholar
  27. 27.
    Kervrann, C., Boulanger, J., Coupé, P.: Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In: SSVM, vol. 4485, pp. 520–532 (2007) Google Scholar
  28. 28.
    Le Pennec, E., Mallat, S.: Sparse geometric image representations with bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2005) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lee, J.S.: Digital image smoothing and the sigma filter. Comput. Vis. Graph. Image Process. 24(2), 255–269 (1983) CrossRefGoogle Scholar
  30. 30.
    Lepski, O.V., Mammen, E., Spokoiny, V.G.: Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Stat. 25(3), 929–947 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Leung, G., Barron, A.R.: Information theory and mixing least-squares regressions. IEEE Trans. Inf. Theory 52(8), 3396–3410 (2006) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, K.C.: From Stein’s unbiased risk estimates to the method of generalized cross validation. Ann. Stat. 13(4), 1352–1377 (1985) zbMATHCrossRefGoogle Scholar
  33. 33.
    Louchet, C., Moisan, L.: Total variation as a local filter. To appear (2010). doi: 10.1109/ICCV.2009.5459452
  34. 34.
    Mahmoudi, M., Sapiro, G.: Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal Process. Lett. 12, 839–842 (2005) CrossRefGoogle Scholar
  35. 35.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV (2009) Google Scholar
  36. 36.
    Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Multiscale Model. Simul. 7(1), 214–241 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Mallows, C.L.: Some comments on c_p. Technometrics 15(4), 661–675 (1973) zbMATHCrossRefGoogle Scholar
  38. 38.
    Nemirovski, A.S.: Topics in Non-parametric Statistics, Lecture Notes in Math., vol. 1738. Springer, Berlin (2000) Google Scholar
  39. 39.
    Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Pang, C., Au, O., Dai, J., Yang, W., Zou, F.: A fast nl-means method in image denoising based on the similarity of spatially sampled pixels. In: MMSP (2009) Google Scholar
  41. 41.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990) CrossRefGoogle Scholar
  42. 42.
    Polzehl, J., Spokoiny, V.G.: Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc., Ser. B, Stat. Methodol. 62(2), 335–354 (2000) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Polzehl, J., Spokoiny, V.G.: Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. Fields 135(3), 335–362 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ramani, S., Blu, T., Unser, M.: Monte-Carlo SURE: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Process. 17(9), 1540–1554 (2008) MathSciNetCrossRefGoogle Scholar
  46. 46.
    Raphan, M., Simoncelli, E.P.: Learning to be Bayesian without supervision. In: NIPS, vol. 19, p. 1145 (2007) Google Scholar
  47. 47.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992) zbMATHCrossRefGoogle Scholar
  48. 48.
    Salmon, J.: On two parameters for denoising with non-local means. IEEE Signal Process. Lett. 17, 269–272 (2010) CrossRefGoogle Scholar
  49. 49.
    Salmon, J., Le Pennec, E.: NL-Means and aggregation procedures. In: ICIP, pp. 2977–2980 (2009) Google Scholar
  50. 50.
    Salmon, J., Strozecki, Y.: From patches to pixels in non-local methods: weighted-average reprojection. In: ICIP (2010) Google Scholar
  51. 51.
    Solo, V.: A sure-fired way to choose smoothing parameters in ill-conditioned inverse problems. In: ICIP, vol. 3, pp. 89–92 (1996) Google Scholar
  52. 52.
    Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002) MathSciNetCrossRefGoogle Scholar
  53. 53.
    Stein, C.M.: Estimation of the mean of a multivariate distribution. In: Proc. Prague Symp. Asymptotic Statist. (1973) Google Scholar
  54. 54.
    Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981) zbMATHCrossRefGoogle Scholar
  55. 55.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998) Google Scholar
  56. 56.
    Tsybakov, A.B.: Optimal rates of aggregation. In: COLT, pp. 303–313 (2003) Google Scholar
  57. 57.
    Van De Ville, D., Kocher, M.: SURE-based non-local means. IEEE Signal Process. Lett. 16, 973–976 (2009) CrossRefGoogle Scholar
  58. 58.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. 1, pp. 511–518 (2001) Google Scholar
  59. 59.
    Wang, J., Guo, Y.W., Ying, Y., Liu, Y.L., Peng, Q.S.: Fast non-local algorithm for image denoising. In: ICIP, pp. 1429–1432 (2006) Google Scholar
  60. 60.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Signal Process. 13(4), 600–612 (2004) Google Scholar
  61. 61.
    Wasserman, L.: All of Nonparametric Statistics. Springer Texts in Statistics. Springer, Berlin (2007) Google Scholar
  62. 62.
    Yaroslavsky, L.P.: Digital Picture Processing, Springer Series in Information Sciences, vol. 9. Springer, Berlin (1985) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Charles-Alban Deledalle
    • 1
  • Vincent Duval
    • 1
    Email author
  • Joseph Salmon
    • 2
  1. 1.Institut TelecomTelecom ParisTech, CNRS LTCIParis cedex 13France
  2. 2.Laboratoire de Probabilité et Modèles Aléatoires, CNRS-UMR 7599Université Paris 7–DiderotParisFrance

Personalised recommendations