Advertisement

Journal of Mathematical Imaging and Vision

, Volume 42, Issue 2–3, pp 196–211 | Cite as

Visual Servoing of Legged Robots

  • Z. EchegoyenEmail author
  • J. M. Lopez-Guede
  • B. Fernandez-Gauna
  • M. Graña
Article

Abstract

We build and test a Visual Servoing for all degrees of freedom of a legged robot. We provide a detailed geometrical description relevant to the construction of the Jacobian matrix containing the dependencies of the visual features on the robot joint angles. This matrix embodies the forward kinematics model. To obtain an autonomous control system invariant to world position, we define the ground reference system relative to the basic support points. The control of the robot is computed by the inversion of the forward kinematics model, with two corrections. First, to preserve the ground reference system we must correct the motion of the supporting points. Second, we test a stability condition to avoid the robot to move into unstable configurations. We have tested the approach on a controlled environment to assess its real life performance. The experimental results show the robustness of the approach.

Keywords

Visual Servoing Legged robots Aibo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altendorfer, R., Koditschek, D.E., Holmes, P.: Towards a factored analysis of legged locomotion models. In: IEEE International Conference on Robotics and Automation, 2003. Proceedings ICRA ’03, vol. 1, pp. 37–44 (2003) CrossRefGoogle Scholar
  2. 2.
    Bretl, T., Lall, S.: Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–807 (2008) CrossRefGoogle Scholar
  3. 3.
    Chalup, S.K., Murch, C.L., Quinlan, M.J.: Machine learning with Aibo robots in the four-legged league of RoboCup. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 37(3), 297–310 (2007) CrossRefGoogle Scholar
  4. 4.
    Cherubini, A., Giannone, F., Iocchi, L., Nardi, D., Palamara, P.F.: Policy gradient learning for quadruped soccer robots. Robot. Auton. Syst. 58(7), 872–8787 (2010) CrossRefGoogle Scholar
  5. 5.
    Colombo, C., Kruse, E., Sabatini, A.M., Dario, P.: Vision-based relative positioning through active fixation and contour tracking. In: Proceedings 2nd International Symp. on Intelligent Robotic Systems, SIRS’94, Grenoble, France, July, pp. 319–325 (1994) Google Scholar
  6. 6.
    Corke, P.: Visual Control of Robot Manipulators—A Review. Robotics and Automated Systems, vol. 7, pp. 1–31. World Scientific, Singapore (1993) Google Scholar
  7. 7.
    Sony Corporation: OPEN-R SDK model information for ERS-7 (2003) Google Scholar
  8. 8.
    Coste-Manière, E., Couvignou, P., Khosla, P.K.: Visual servoing in the task-function framework: a contour following task. J. Intell. Robot. Syst. 12(1), 1–21 (1995) CrossRefGoogle Scholar
  9. 9.
    Deakin, G.J.: Legged robots. Prod. Eng. 64(9), 8 (1985) Google Scholar
  10. 10.
    Echegoyen, Z., d’Anjou, A., Graña, M.: Contribution to legged robot visual servoing. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, KES 2007. LNAI, vol. 4693, pp. 1179–1186. Springer, Berlin (2007) CrossRefGoogle Scholar
  11. 11.
    Echegoyen, Z., d’Anjou, A., Graña, M.: Modeling a legged robot for visual servoing. In: Gervasi, O., Gavrilova, M.L. (eds.) Computational Science and Its Applications—ICCSA 2007. LNCS, vol. 4707, pp. 798–810. Springer, Berlin (2007) CrossRefGoogle Scholar
  12. 12.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8, 313–326 (1992) CrossRefGoogle Scholar
  13. 13.
    Go, Y., Xiaolei, Y., Bowling, A.: Navigability of multi-legged robots. IEEE/ASME Trans. Mechatron. 11(1), 1–8 (2006) CrossRefGoogle Scholar
  14. 14.
    Graña, M., Torrealdea, F.J.: Hierarchically structured systems. Eur. J. Oper. Res. 25, 20–26 (1986) CrossRefGoogle Scholar
  15. 15.
    Hager, G.: The “xvision” system: a general purpose substrate for real-time vision-based robotics. In: Proceedings of the Workshop on Vision for Robotics, pp. 56–63 (1995) Google Scholar
  16. 16.
    Hill, J., Park, W.T.: Real-time control of a robot with a mobile camera. In: Proceedings of the 9th ISIR, Washington, DC, March, pp. 233–246 (1979) Google Scholar
  17. 17.
    Hoff, J., Bekey, G.A.: A cerebellar approach to adaptive locomotion for legged robots. In: 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA’97 Proceedings, July, pp. 94–100 (1997) Google Scholar
  18. 18.
    Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Trans. Robot. 21(3), 402–410 (2005) CrossRefGoogle Scholar
  19. 19.
    Hosoda, K., Kamado, M., Asada, M.: Vision-based servoing control for legged robots. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3154–3159 (1997) Google Scholar
  20. 20.
    Hosoda, K., Miyashita, T., Takeuchi, S., Asada, M.: Adaptive visual servoing for legged robots-vision-cued swaying oflegged robots in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 778–784 (1997) Google Scholar
  21. 21.
    Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996) CrossRefGoogle Scholar
  22. 22.
    Kitano, H., Fujita, M., Zrehen, S., Kageyama, K.: Sony legged robot for RoboCup challenge. In: 1998 IEEE International Conference on Robotics and Automation, Proceedings, May, vol. 3, pp. 2605–2612 (1998) Google Scholar
  23. 23.
    Krasny, D.P., Orin, D.E.: Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(4), 1685–1696 (2004) CrossRefGoogle Scholar
  24. 24.
    Prajoux, R., de Martins, L.S.F.: A walk supervisor architecture for autonomous four-legged robots embedding real-time decision-making. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems ’96, IROS 96, November, vol. 1, pp. 200–207 (1996) CrossRefGoogle Scholar
  25. 25.
    Quinlan, M., Murch, C., Moore, T., Middleton, R., Li, L., King, R., Chalup, S.: The 2004 nubots team report. Technical report (2004) Google Scholar
  26. 26.
    Raibert, M.H., Tello, E.R.: Legged robots that balance. IEEE Expert 1(4), 89–89 (1986) CrossRefGoogle Scholar
  27. 27.
    Rives, P., Chaumette, F., Espiau, B.: Visual servoing based on a task function approach. In: Experimental Robotics I, Proceedings of the First International Symposium on Experimental Robotics, Montreal, Canada, June, pp. 412–428 (1990) Google Scholar
  28. 28.
    Rosen, C., Nitzan, D., Agin, G., Bavarsky, A., Gleason, G., Hill, J., McGhie, D., Park, W.: Machine intelligence research applied to industrial automation. Technical Report NSF Grant APR-75-13074, SRI Project 4391, 6th Report, SRI International, Menlo Park, CA, November 1976 Google Scholar
  29. 29.
    Rosen, C., Nitzan, D., Agin, G., Bavarsky, A., Gleason, G., Hill, J., McGhie, D., Park, W.: Machine intelligence research applied to industrial automation. Technical report, 8th Report, SRI International, August 1978 Google Scholar
  30. 30.
    Röfer, Th., Burkhard, H.-D., Düert, U., Homann, J., Göhring, D., Jüngel, M., Lötzsch, M., v. Stryk, O., Brunn, R., Kallnik, M., Kunz, M., Petters, S., Risler, M., Stelzer, M., Dahm, I., Wachter, M., Engel, K., Osterhues, A., Schumann, C., Ziegler, J.: Germanteam robocup 2003. Technical report, http://www.robocup.de/germanteam/GT2003.pdf, 2003
  31. 31.
    Samson, C., Le Borgne, M., Espiau, B.: Robot control: the task function approach. In: Oxford Engineering Science Series, vol. 22, 1st edn. Clarendon Press, Oxford University Press, Oxford (1991) Google Scholar
  32. 32.
    Sanderson, A.C., Weiss, L.E.: Image-based visual servo control using relational graph error signals. In: Proceedings of the IEEE International Conference on Cybernetics and Society, vol. 1, pp. 1074–1077 (1980) Google Scholar
  33. 33.
    Shirai, Y., Inoue, H.: Guiding a robot by visual feedback in assembling tasks. Pattern Recognit. 5(2), 99–108 (1973) CrossRefGoogle Scholar
  34. 34.
    Tira-Thompson, E.J.: Tekkotsu: A rapid development framework for robotics. Master’s thesis, Carnegie Mellon University, Pittsburgh, PA (2004) Google Scholar
  35. 35.
    Veloso, M., Uther, W., Fijita, M., Asada, M., Kitano, H.: Playing soccer with legged robots. In: 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Proceedings, October, vol. 1, pp. 437–442 (1998) Google Scholar
  36. 36.
    Weiss, L.E.: Dynamic visual servo control of robots: an adaptive image-based approach. PhD thesis, Carnegie-Mellon University, April 1984 Google Scholar
  37. 37.
    Wichman, W.M.: Use of optical feedback in the computer control of an arm. Technical report, Standford AI project, AI memo 55, August 1967 Google Scholar
  38. 38.
    Yang, J.-M.: Fault-tolerant gaits of quadruped robots for locked joint failures. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 32(4), 507–516 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Z. Echegoyen
    • 1
    Email author
  • J. M. Lopez-Guede
    • 1
  • B. Fernandez-Gauna
    • 1
  • M. Graña
    • 1
  1. 1.Grupo Inteligencia ComputacionalUPV/EHUDonostiaSpain

Personalised recommendations