Journal of Mathematical Imaging and Vision

, Volume 40, Issue 3, pp 259–268 | Cite as

On the Occurrence Probability of Local Binary Patterns: A Theoretical Study

  • Francesco Bianconi
  • Antonio Fernández


It is well-known that local binary pattern (LBP) histograms of real textures exhibit a markedly uneven distribution, which is dominated by the so-called uniform patterns. The widely accepted interpretation of this phenomenon is that uniform patterns correspond to texture microfeatures, such as edges, corners, and spots. In this paper we present a theoretical study about the relative occurrence of LBPs based on the consideration that the LBP operator partitions the set of grayscale patterns into an ensemble of disjoint multidimensional polytopes. We derive exact prior probabilities of LBPs by calculating the volume of such polytopes. Our study puts in evidence that both the uneven distribution of the LBP histogram and the high occurrence of uniform patterns are direct consequences of the mathematical structure of the method rather than an intrinsic property of real textures.


Local binary patterns Texture Polytopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006) CrossRefGoogle Scholar
  2. 2.
    Ash, R.B.: Information Theory. Dover, New York (1965) zbMATHGoogle Scholar
  3. 3.
    Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8, 295–313 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barvinok, A.I.: Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19, 769–779 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Beck, M., Robins, S.: Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Springer, Berlin (2007) zbMATHGoogle Scholar
  6. 6.
    Bovik, A.C.: Handbook of Image and Video Processing, 2nd edn., p. 432. Elsevier, Amsterdam (2005) Google Scholar
  7. 7.
    Clauss, P., Loechner, V.: Parametric analysis of polyhedral iteration spaces. J. VLSI Signal Process. 19, 179–194 (1998) CrossRefGoogle Scholar
  8. 8.
    Diaz, R., Robins, S.: The Ehrhart plynomial of a lattice polytope. Ann. Math. 145, 503–518 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. (2010). doi: 10.1007/s00138-010-0253-4
  10. 10.
    Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation, pp. 43–74. Birkhäuser, Basel (2000) Google Scholar
  11. 11.
    Guoxing, J., Yanfang, C.: An LBP-based multi-scale illumination preprocessing method for face recognition. J. Electron. 26, 509–516 (2009) Google Scholar
  12. 12.
    He, S., Soraghan, J.J., OReilly, B.F., Xing, D.: Quantitative analysis of facial paralysis using local binary patterns in biomedical videos. IEEE Trans. Biomed. Eng. 56, 2009 (1864–1870) Google Scholar
  13. 13.
    Heikkilä, M., Pietikäinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28, 657–662 (2006) CrossRefGoogle Scholar
  14. 14.
    Jin, H., Liu, Q., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proceedings of the 3rd International Conference on Image and Graphics, pp. 306–309 (2004) Google Scholar
  15. 15.
    Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant Local Binary Patterns for texture classification. IEEE Trans. Image Process. 18, 1107–1118 (2009) CrossRefGoogle Scholar
  16. 16.
    De Loera, J.A.: The many aspects of counting lattice points in polytopes. Math. Semesterber. 52, 175–195 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    De Loera, J.A., Hemmeckeb, R., Tauzera, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. J. Symb. Comput. 38, 1273–1302 (2004) CrossRefGoogle Scholar
  18. 18.
    Lucieer, A., Stein, A., Fisher, P.: Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty. Int. J. Remote Sens. 26, 2917–2936 (2005) CrossRefGoogle Scholar
  19. 19.
    Mäenpää, T., Pietikäinen, M.: Texture analysis with Local Binary Patterns. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 197–216. World Scientific, Singapore (2005) CrossRefGoogle Scholar
  20. 20.
    Mäenpää, T., Turtinen, T., Pietikäinen, M.: Real-time surface inspection by texture. Real-Time Imaging 9, 289–296 (2003) CrossRefGoogle Scholar
  21. 21.
    Mäenpää, T., Ojala, T., Pietikäinen, M., Maricor, S.: Robust Texture Classification by Subsets of Local Binary Patterns. In: Proceedings of the International Conference on Pattern Recognition, Barcelona (Spain), September 2000 (2000) Google Scholar
  22. 22.
    Motzkin, T.S., Raifa, H., Thompson, G.L., Thrall, R.M.: The Double Description Method, vol. 2. Princeton University Press, Princeton (1953) Google Scholar
  23. 23.
    Nanni, L., Lumini, A.: Local binary patterns for a hybrid fingerprint matcher. Pattern Recognit. 41, 3461–3466 (2008) zbMATHCrossRefGoogle Scholar
  24. 24.
    Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010) CrossRefGoogle Scholar
  25. 25.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29, 51–59 (1996) CrossRefGoogle Scholar
  26. 26.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002) CrossRefGoogle Scholar
  27. 27.
    Petrou, M., García Sevilla, P.: Image Processing. Dealing with Texture. Wiley-Interscience, New York (1982) Google Scholar
  28. 28.
    Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, San Diego (1982) Google Scholar
  29. 29.
    Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis. Comput. 27, 803–816 (2009) CrossRefGoogle Scholar
  30. 30.
    Shulman, N., Feder, M.: The Uniform Distribution as a Universal Prior. IEEE Trans. Inf. Theory 50, 1864–1870 (2004) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Sørensen, L., Shaker, S.B., De Bruijne, M.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imaging 29, 559–569 (2010) CrossRefGoogle Scholar
  32. 32.
    Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  33. 33.
    Tajeripour, F., Kabir, E., Sheikhi, A.: Fabric defect detection using modified local binary patterns. EURASIP J. Adv. Signal Process. (2008). doi: 10.1155/2008/783898 zbMATHGoogle Scholar
  34. 34.
    Takala, V., Pietikäinen, M.: Multi-object tracking using color, texture and motion. In: Proceedings of the Seventh IEEE International Workshop on Visual Surveillance, Chicago, (USA), June 2007 (2007) Google Scholar
  35. 35.
    Tuceryan, M., Jain, A.K.: Texture analysis. In: The Handbook of Pattern Recognition and Computer Vision, 2nd edn. World Scientific, Singapore (1998) Google Scholar
  36. 36.
    van Herick, A.W.: Theoretical and computational methods for lattice point enumeration in inside-out polytopes. Master Thesis, San Francisco State University, San Francisco (USA), August 2007 Google Scholar
  37. 37.
    Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31, 971–987 (2009) CrossRefGoogle Scholar
  38. 38.
    Verdoolaege, S.: Barvinok: User Guide. Version: 0.30, March 2010. Available at
  39. 39.
    Xie, X., Mirmehdi, M.: A galaxy of texture features. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of Texture Analysis, pp. 375–406. Imperial College Press, London (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dipartimento Ingegneria IndustrialeUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Escuela de Ingeniería Industrial, Universidade de VigoCampus UniversitarioVigoSpain

Personalised recommendations