Journal of Mathematical Imaging and Vision

, Volume 40, Issue 2, pp 188–198 | Cite as

Two Enhanced Fourth Order Diffusion Models for Image Denoising

Open Access
Article

Abstract

This paper presents two new higher order diffusion models for removing noise from images. The models employ fractional derivatives and are modifications of an existing fourth order partial differential equation (PDE) model which was developed by You and Kaveh as a generalization of the well-known second order Perona-Malik equation. The modifications serve to cure the ill-posedness of the You-Kaveh model without sacrificing performance. Also proposed in this paper is a simple smoothing technique which can be used in numerical experiments to improve denoising and reduce processing time. Numerical experiments are shown for comparison.

Keywords

Nonlinear diffusion Fractional derivatives Image denoising Fourth order 

References

  1. 1.
    Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge-detection by non-linear diffusion II. SIAM J. Numer. Anal. 29(3), 845–866 (1992) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Amann, H.: Time-delayed Perona-Malik problems. Acta Math. Univ. Comen. LXXVI, 15–38 (2007) MathSciNetGoogle Scholar
  3. 3.
    Bai, J., Feng, X.C.: Fractional order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Belahmidi, A.: Equations aux dérivées partielles appliquées à la restoration et à l’agrandissement des images. Ph.D. Thesis. Université Paris-Dauphine, Paris (2003) Google Scholar
  5. 5.
    Belahmidi, A., Chambolle, A.: Time-delay regularization of anisotropic diffusion and image processing. Modél. Math. Anal. Numér. 39(2), 231–251 (2005) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bertozzi, A., Greer, J.: Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Commun. Pure Appl. Math. LVII, 0764–0790 (2004) MathSciNetGoogle Scholar
  7. 7.
    Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge-detection by non-linear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000) (electronic). doi: 10.1137/S1064827598344169 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chan, T.F., Esedoglu, S., Park, F.E.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. UCLA CAM report 05-28 (April 2005) Google Scholar
  11. 11.
    Chen, Y., Bose, P.: On the incorporation of time-delay regularization into curvature-based diffusion. J. Math. Imaging Vis. 14(2), 149–164 (2001) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cottet, G.H., Ayyadi, M.E.: A Volterra type model for image processing. IEEE Trans. Image Process. 7, 292–303 (1998) CrossRefGoogle Scholar
  13. 13.
    Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459. Springer, Berlin (2005) CrossRefGoogle Scholar
  14. 14.
    Didas, S., Weickert, J., Burgeth, B.: Stability and local feature enhancement of higher order nonlinear diffusion filtering. Pattern Recognit. 3663, 451–458 (2005) CrossRefGoogle Scholar
  15. 15.
    Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35(3), 208–226 (2009). doi: 10.1007/s10851-009-0166-x MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guidotti, P.: A new nonlocal nonlinear diffusion of image processing. J. Differ. Equ. 246(12), 4731–4742 (2009) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Guidotti, P.: A new well-posed nonlinear nonlocal diffusion. Nonlinear Anal. 72, 4625–4637 (2010) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Guidotti, P., Lambers, J.: Two new nonlinear nonlocal diffusions for noise reduction. J. Math. Imaging Vis. 33(1), 25–37 (2009) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Guidotti, P., Longo, K.: Well-posedness for a class of fourth order diffusions for image processing. Nonlinear Differ. Equ. Appl. (to appear) Google Scholar
  20. 20.
    Hajiaboli, M.: A self-governing hybrid model for noise removal. In: Advances in Image and Video Technology. Lecture Notes in Computer Science, vol. 5414. Springer, Berlin (2008) Google Scholar
  21. 21.
    Hajiaboli, M.: An anisotropic fourth-order partial differential equation for noise removal. In: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 5567. Springer, Berlin (2009) CrossRefGoogle Scholar
  22. 22.
    Kichenassamy, S.: The Perona-Malik paradox. SIAM J. Appl. Math. 57(5), 1328–1342 (1997) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lambers, J.V.: Enhancement of Krylov subspace spectral methods by block Lanczos iteration. Electron. Trans. Numer. Anal. 31, 86–109 (2008) MathSciNetMATHGoogle Scholar
  24. 24.
    Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007) CrossRefGoogle Scholar
  25. 25.
    Lysaker, M., Lundervold, A., Tai, X.: Noise removal using fourth order differential equations with applications to medical magnetic resonance images in space-time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003) CrossRefGoogle Scholar
  26. 26.
    Mathieu, B., Melchior, P., Outstaloup, A., Ceyral, C.: Fractional differentiation for edge detection. Signal Process. 83, 2421–2432 (2003) MATHCrossRefGoogle Scholar
  27. 27.
    Nitzberg, M., Shiota, T.: Nonlinear image smoothing with edge and corner enhancement. Tech. Report 90-2. Harvard University, Cambridge, MA (1990) Google Scholar
  28. 28.
    Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14, 826–833 (1992) CrossRefGoogle Scholar
  29. 29.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 161–192 (1990) CrossRefGoogle Scholar
  30. 30.
    Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of the SIGGRAPH 1999 Annual Conference on Computer Graphics, August 8–13, 1999, Los Angeles, CA, USA, Siggraph Annual Conference Series, pp. 83–90. ACM Siggraph, Addison-Wesley, Longman, Harlow (1999) Google Scholar
  31. 31.
    Wei, G.: Generalized Perona-Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–167 (1999) CrossRefGoogle Scholar
  32. 32.
    Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner Verlag, Stuttgart (1998) MATHGoogle Scholar
  33. 33.
    Witkin, A.P.: Scale-space filtering. In: Proc. IJCAI, Karlsruhe, pp. 1021–1019 (1983) Google Scholar
  34. 34.
    You, Y., Kaveh, M.: Fourth order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    You, Y., Xu, W., Tannenbaum, A., Kaveh, M.: Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. Image Process. 5(11), 1539–1553 (1996) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at IrvineIrvineUSA

Personalised recommendations