Advertisement

Journal of Mathematical Imaging and Vision

, Volume 40, Issue 2, pp 147–161 | Cite as

Robust Fitting of Circle Arcs

  • I. Ladrón de Guevara
  • J. Muñoz
  • O. D. de Cózar
  • E. B. BlázquezEmail author
Article

Abstract

Geometric fitting is present in different fields of sciences, engineering and astronomy. In particular, circular arc primitives are some of the most commonly employed geometric features in digital image analysis and visual pattern recognition. In this paper, a robust geometric method based on mean absolute error to fit a set of points is proposed. Most geometric and algebraic methods are sensitive to noise and outlier points and so the results are not usually acceptable. It is well known that the least absolute error criterion leads to robust estimations. However, the objective function is non differentiable and thus algorithms based on gradient cannot be applied. We propose an algorithm based on left and right side partial derivatives that is computationally efficient as an alternative to conventional algorithms, and evaluate the sensitivity of circle fits for different types of data.

Keywords

Circle fitting Absolute geometric error Image occlusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shunmugam, M.S.: Criteria for computer-aided form evaluation. J. Eng. Ind. 113, 233–238 (1991) CrossRefGoogle Scholar
  2. 2.
    Van-Ban, L., Lee, D.T.: Out-of-roundness problem revisited. IEEE Trans. Pattern Anal. Mach. Intell. 13, 217–23 (1991) CrossRefGoogle Scholar
  3. 3.
    Ventura, J.A., Yeralan, S.: The minimax centre estimation problem for automated roundness inspection. Eur. J. Oper. Res. 41, 64–72 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Yeralan, S., Ventura, J.A.: Computerized roundness inspection. Int. J. Prod. Res. 26, 1921–1935 (1988) CrossRefGoogle Scholar
  5. 5.
    Schalk, P., Ofner, R., O’Leary, P.: Pipe eccentricity measurement using laser triangulation. Image Vis. Comput. 25, 1194–1203 (2007) CrossRefGoogle Scholar
  6. 6.
    Karimäki, V.: Effective circle fitting for particle trajectories. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 305, 187–191 (1991) CrossRefGoogle Scholar
  7. 7.
    Joseph, S.H.: Unbiased least-squares fitting of circular arcs. Graph. Models Image Process. 56, 424–432 (1994) CrossRefGoogle Scholar
  8. 8.
    Ahn, S.J., Rauh, W., Warnecke, H.J.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola and parabola. Pattern Recognit. 34, 2283–2303 (2001) zbMATHCrossRefGoogle Scholar
  9. 9.
    Rorres, C., Romano, D.G.: Finding the centre of a circular starting line in an ancient Greek Stadium. SIAM Rev. 39(4), 745–754 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chernov, N., Sapirstein, P.N.: Fitting circles to data with correlated noise. Comput. Stat. Data Anal. 52, 5328–5337 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Paton, K.: Conic sections in chromosome analysis. Pattern Recognit. 2, 39–51 (1970) CrossRefGoogle Scholar
  12. 12.
    Corral, C.A., Lindquist, C.S.: On Implementing Kåsa’s circle fit procedure. IEEE Trans. Instrum. Meas. 47, 789–795 (1998) CrossRefGoogle Scholar
  13. 13.
    Gander, W., Golub, G.H., Strebel, R.: Least-square fitting of circles and ellipses. BIT Numer. Math. 43, 558–578 (1994) MathSciNetGoogle Scholar
  14. 14.
    Calafiore, G.: Approximation of n-dimensional data using spherical and ellipsoidal primitives. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 32, 269–278 (2002) CrossRefGoogle Scholar
  15. 15.
    Kåsa, I.: A curve fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. 25, 8–14 (1976) Google Scholar
  16. 16.
    Zelniker, E.E., Clarkson, I.V.L.: A statistical analysis of the Delogne-Kåsa method for fitting circles. Digit. Signal Process. 16, 498–522 (2006) CrossRefGoogle Scholar
  17. 17.
    Landau, U.M.: Estimation of a circular arc centre and its radius. Comput. Vis. Graph. Image Process. 38, 317–326 (1987) CrossRefGoogle Scholar
  18. 18.
    Späth, H.: Least-squares fitting by circles. Computing 57, 179–185 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Chernov, N., Lesort, C.: Least squares fitting of circles. J. Math. Imaging Vis. 23, 239–252 (2005) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Drezner, Z., Steiner, S., Wesolowsky, G.O.: On the circle closet to a set of points. Comput. Oper. Res. 29, 637–650 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Plastria, F.: GBSSS, the generalized big square small square method for planar single facility location. Eur. J. Oper. Res. 62, 163–174 (1992) zbMATHCrossRefGoogle Scholar
  22. 22.
    Hansen, P., Peeters, D., Richard, D., Thisse, J.F.: The minisum and minimax location problems revisited. Oper. Res. 33, 1251–1265 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Umbach, D., Jones, K.N.: A few methods for fitting circles to data. IEEE Trans. Instrum. Meas. 52, 1881–1885 (2003) CrossRefGoogle Scholar
  24. 24.
    Caudill, S.B.: Estimating the circle closest to a set of points by maximum likelihood using the BHHH algorithm. Eur. J. Oper. Res. 172, 120–126 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Berndt, E.R., Hall, B.H., Hall, R.E., Hausman, J.A.: Estimation and Inference in nonlinear structural models. Ann. Econ. Soc. Meas. 3, 653–665 (1974) Google Scholar
  26. 26.
    Al-Sharadqah, A., Chernov, N.: Error analysis for circle fitting algorithms. Electron. J. Stat. 3, 886–911 (2009) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rangarajan, P., Kanatani, K.: Improved algebraic methods for circle fitting. Electron. J. Stat. 3, 1075–1082 (2009) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Fourer, R., Gay, D.M., Kernighan, B.W.: Ampl. A Modelling Language for Mathematical Programming. The Scientific Press, San Francisco (1993) Google Scholar
  30. 30.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986) CrossRefGoogle Scholar
  31. 31.
    Coope, I.D.: Circle fitting by linear and nonlinear least squares. J. Optim. Theory Appl. 76, 381–388 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Gruntz, D.: Finding the best fit circle. MathWorks Newsl. 1, 5 (1990) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • I. Ladrón de Guevara
    • 1
  • J. Muñoz
    • 2
  • O. D. de Cózar
    • 3
  • E. B. Blázquez
    • 3
    Email author
  1. 1.E.T.S. de Ingenieros IndustrialesUniversity of MalagaMalagaSpain
  2. 2.E.T.S. de Ingenieros de InformáticaUniversity of MalagaMalagaSpain
  3. 3.E.U. PolitécnicaUniversity of MalagaMalagaSpain

Personalised recommendations