Journal of Mathematical Imaging and Vision

, Volume 39, Issue 2, pp 161–179 | Cite as

Periodic Plus Smooth Image Decomposition

  • Lionel MoisanEmail author


When the Discrete Fourier Transform of an image is computed, the image is implicitly assumed to be periodic. Since there is no reason for opposite borders to be alike, the “periodic” image generally presents strong discontinuities across the frame border. These edge effects cause several artifacts in the Fourier Transform, in particular a well-known “cross” structure made of high energy coefficients along the axes, which can have strong consequences on image processing or image analysis techniques based on the image spectrum (including interpolation, texture analysis, image quality assessment, etc.). In this paper, we show that an image can be decomposed into a sum of a “periodic component” and a “smooth component”, which brings a simple and computationally efficient answer to this problem. We discuss the interest of such a decomposition on several applications.


Discrete Fourier Transform Periodic image Edge effect Ringing Artifact Sinc interpolation Image quality assessment Phase coherence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Averbuch, A., Israeli, M., Vozovoi, L.: A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933–952 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barrett, H.H., Denny, J.L., Wagner, R.F., Myers, K.J.: Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance. J. Opt. Soc. Am. A 12(5), 834–852 (1995) CrossRefGoogle Scholar
  3. 3.
    Beaudoin, N., Beauchemin, S.: An accurate discrete Fourier transform for image processing. In: Proceedings of International Conference on Pattern Recognition, vol. 3, pp. 935–939 (2002) Google Scholar
  4. 4.
    Blanchet, G., Moisan, L., Rougé, B.: Measuring the global phase coherence of an image. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 1176–1179 (2008) Google Scholar
  5. 5.
    Blanchet, G., Moisan, L., Rougé, B.: Automatic detection of well sampled images via a new ringing measure. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1030–1033 (2010) Google Scholar
  6. 6.
    Briggs, W.L., Henson, V.E.: The DFT: An Owner’s Manual for the Discrete Fourier Transform. SIAM, Philadelphia (1995) zbMATHGoogle Scholar
  7. 7.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    De Castro, E., Morandi, C.: Registration of translated and rotated images using finite Fourier transforms. IEEE Trans. Pattern Anal. Mach. Anal. 9(5), 700–703 (1987) CrossRefGoogle Scholar
  9. 9.
    Desolneux, A., Ladjal, S., Moisan, L., Morel, J.-M.: Dequantizing image orientation. IEEE Trans. Image Process. 11(10), 1129–1140 (2002) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guichard, F., Malgouyres, F.: Total Variation based interpolation. Proc. Eur. Signal Process. Conf. 3, 1741–1744 (1998) Google Scholar
  11. 11.
    Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978) CrossRefGoogle Scholar
  12. 12.
    He, D., Sun, Q.: A practical print-scan resilient watermarking scheme. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 257–260 (2005) Google Scholar
  13. 13.
    Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. 207, 187–217 (1980) CrossRefGoogle Scholar
  14. 14.
    Hutchison, L.A., Barrett, W.A.: Fourier-Mellin registration of line-delineated tabular document images. Int. J. Doc. Anal. Recognit. 8(2–3), 87–110 (2006) Google Scholar
  15. 15.
    Kuglin, C., Hines, D.: The phase correlation image alignment method. In: Proc. Int. Conf. Cybernetics and Society, pp. 163–165 (1975) Google Scholar
  16. 16.
    Larrey-Ruiz, J., Verdu-Monedero, R., Morales-Sanchez, J.: A Fourier domain framework for variational image registration. J. Math. Imaging Vis. 32(1), 57–72 (2008) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Leprince, S., Barbot, S., Ayoub, F., Avouac, J.-P.: Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 45(6), 1529–1558 (2007) CrossRefGoogle Scholar
  18. 18.
    Lin, C.-Y., Wu, Min, Bloom, J.A., Cox, I.J., Miller, M.L., Lui, Yui Man: Rotation, scale, and translation resilient watermarking for images. IEEE Trans. Image Process. 10(5), 767–782 (2001) zbMATHCrossRefGoogle Scholar
  19. 19.
    Lohmann, A.W., Mendelovic, D., Shabtay, G.: Significance of phase and amplitude in the Fourier domain. J. Opt. Soc. Am. A 14, 2901–2904 (1997) CrossRefGoogle Scholar
  20. 20.
    Nill, N.B., Bouzas, B.H.: Objective image quality measure derived from digital image power spectra. Opt. Eng. 31(4), 813–825 (1992) CrossRefGoogle Scholar
  21. 21.
    Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996) CrossRefGoogle Scholar
  22. 22.
    Saito, N., Remy, J.-F.: The polyharmonic local sine transform: a new tool for local image analysis and synthesis without edge effect. Appl. Comput. Harmon. Anal. 20(1), 41–73 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37(1), 10–21 (1949) MathSciNetGoogle Scholar
  24. 24.
    Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release 2. (2005)
  25. 25.
    Bugao, Xu.: Identifying fabric structures with fast Fourier transform techniques. Tex. Res. J. 66(8), 496–506 (1996) CrossRefGoogle Scholar
  26. 26.
    Min, Xu., Varshney, P.K., Ruixin, Niu: A subspace method for Fourier based image registration, Asilomar Conference on Signals, Systems and Computers, pp. 425–429 (2006) Google Scholar
  27. 27.
    Yamatani, K., Saito, N.: Improvement of DCT-based compression algorithms using poisson equation. IEEE Trans. Image Process. 15(12), 3672–3689 (2006) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhao, J., Saito, N., Wang, Y.: PHLST5: a practical and improved version of polyharmonic local sine transform. J. Math. Imaging Vis. 30(1), 23–41 (2008) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Xiao-Qun, Zhang, Froment, J.: Total variation based Fourier reconstruction and regularization for computer tomography. Nucl. Sci. Sympos. Conf. Record 4, 2332–2336 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.MAP5, CNRS UMR 8145Université Paris DescartesParisFrance

Personalised recommendations