Journal of Mathematical Imaging and Vision

, Volume 38, Issue 2, pp 139–158 | Cite as

Modeling and Estimation of the Dynamics of Planar Algebraic Curves via Riccati Equations

  • Mustafa Unel
  • Bijoy K. Ghosh
  • Ahmet Y. Yazicioglu
Article
  • 99 Downloads

Abstract

Motivated by problems in vision and robotics, in this paper we are interested in describing the dynamics of planar algebraic curves in rigid and affine motion. A new method is presented for modeling the dynamics of such curves in terms of Riccati equations. It is shown that rigid or affine motion of an algebraic curve can be described using the dynamics of line factors obtained from a unique decomposition of the curve, and each individual line dynamics can be described by a Riccati equation. An estimation algorithm is proposed to estimate rigid or affine motion using line parameters. Importance of data normalization is also investigated in the context of motion estimation. Experiments with simulated data and real images demonstrate that the proposed method can provide satisfactory motion estimation results from perturbed data.

Keywords

Motion estimation Algebraic curves Affine motion Riccati equations Data normalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Irani, M., Anandan, P.: About direct methods. ICCV Workshop on Vision Algorithms, pp. 267–277 (1999) Google Scholar
  2. 2.
    Torr, P.H.S., Zisserman, A.: Feature based methods for structure and motion estimation. ICCV Workshop on Vision Algorithms, pp. 278–294 (1999) Google Scholar
  3. 3.
    Schindler, G., Krishnamurthy, P., Dellaert, F.: Line-based structure from motion for urban environments. In: Proc. of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), pp. 846–853 (2006) Google Scholar
  4. 4.
    Liu, Y., Huang, T.S.: A linear algorithm for motion estimation using straight line correspondences. Comput. Vis. Graph. Image Process. 44, 35–57 (1988) CrossRefGoogle Scholar
  5. 5.
    Bartoli, A., Sturm, P.: The 3D line motion matrix and alignment of line reconstruction. Int. J. Comput. Vis. 57(3), 159–178 (2004) CrossRefGoogle Scholar
  6. 6.
    Rehbinder, H., Ghosh, B.K.: Pose estimation using line-based dynamic vision and inertial sensors. IEEE Trans. Autom. Control 48, 186–199 (2003) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Andreff, N., Espiau, B., Horaud, R.: Visual servoing from lines. In: Proc. of the 2000 IEEE International Conference on Robotics and Automation, pp. 2070–2075. San Francisco, CA, April (2000) Google Scholar
  8. 8.
    Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Proc. of the 4th Alvey Vision Conference, pp. 147–152 (1988) Google Scholar
  9. 9.
    Mindru, F., Moons, T., Van Gool, L.: Color-based moment invariants for the viewpoint and illumination independent recognition of planar color patterns. In: ICAPR’98, pp. 113–122 (1998) Google Scholar
  10. 10.
    Yang, Z., Cohen, F.: Cross-weighted moments and affine invariants for image registration and matching. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 804–814 (1999) CrossRefGoogle Scholar
  11. 11.
    Heikkila, J.: Pattern matching with affine moment descriptors. Pattern Recognit. 37(9), 1825–1834 (2004) CrossRefGoogle Scholar
  12. 12.
    Suk, T., Flusser, J.: Projective moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1364–1367 (2004) CrossRefGoogle Scholar
  13. 13.
    Sheynin, A.S., Tuzikov, V.A.: Moment computation for objects with spline curve boundary. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1317–1322 (2003) CrossRefGoogle Scholar
  14. 14.
    Kuhl, P.F., Giardina, R.C.: Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 18(3), 236–258 (1982) CrossRefGoogle Scholar
  15. 15.
    Yip, K.K.R., Tam, K.P., Leung, K.N.D.: Application of elliptic Fourier descriptors to symmetry detection under parallel projection. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 277–286 (1994) MATHCrossRefGoogle Scholar
  16. 16.
    Soldea, O., Unel, M., Ercil, A.: Recursive computation of moments of 2D objects represented by elliptic Fourier descriptors. Pattern Recognit. Lett. (2010). doi:10.1016/j.patrec.2010.02.009 Google Scholar
  17. 17.
    Keren, D., et al.: Fitting curves and surfaces to data using constrained implicit polynomials. IEEE Trans. Pattern Anal. Mach. Intell. 23(1) (1999) Google Scholar
  18. 18.
    Unel, M., Wolovich, W.A.: On the construction of complete sets of geometric invariants for algebraic curves. Adv. Appl. Math. 24(1), 65–87 (2000) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Unel, M., Wolovich, W.A.: A new representation for quartic curves and complete sets of geometric invariants. Int. J. Pattern Recognit. Artif. Intell. (1999) Google Scholar
  20. 20.
    Taubin, G., Cooper, D.B.: 2D and 3D object recognition and positioning with algebraic invariants and covariants. Symbolic and Numerical Computation for Artificial Intelligence, vol. 6. Academic Press, San Diego (1992) Google Scholar
  21. 21.
    Wolovich, W.A., Unel, M.: The determination of implicit polynomial canonical curves. IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1080–1089 (1998) CrossRefGoogle Scholar
  22. 22.
    Wolovich, W.A., Unel, M.: Vision based system identification and state estimation. In: The Confluence of Vision and Control. Springer Lecture Notes in Control and Information Sciences, vol. 237, pp. 171–182. Springer, Berlin (1998) CrossRefGoogle Scholar
  23. 23.
    Yondem, B., Unel, M., Ercil, A.: 2D Shape Tracking Using Algebraic Curve Spaces. Lecture Notes in Computer Science, vol. 3733, pp. 698–707. Springer, Berlin (2005) Google Scholar
  24. 24.
    Blane, M.M., Lei, Z., Civi, H., Cooper, D.B.: The 3L algorithm for fitting implicit polynomial curves and surfaces to data. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 298–313 (2000) CrossRefGoogle Scholar
  25. 25.
    Tasdizen, T., Tarel, J.P., Cooper, D.B.: Improving the stability of algebraic curves for applications. IEEE Trans. Image Process. 9(3), 405–416 (2000) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sahin, T., Unel, M.: Globally Stabilized 3L Curve Fitting. Lecture Notes in Computer Science, vol. 3211, pp. 495–502. Springer, Berlin (2004) Google Scholar
  27. 27.
    Sahin, T., Unel, M.: Stable algebraic surfaces for 3D object representation. J. Math. Imaging Vis. 32, 127–137 (2008) CrossRefGoogle Scholar
  28. 28.
    Unel, M., Wolovich, W.A.: Pose estimation and object identification using complex algebraic representations. Pattern Anal. Appl. 1(3), 178–188 (1998) MATHCrossRefGoogle Scholar
  29. 29.
    Jin, H., Yezzi, A.J., Soatto, S.: Mumford-Shah on the move: region-based segmentation on deforming manifolds with application to 3-D reconstruction of shape and appearance from multi-view images. J. Math. Imaging Vis. 29(2–3), 219–234 (2007) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Faugeras, O.D.: On the motion of 3-D curves and its relationship to optical flow. In: Faugeras, O.D. (ed.), Proc. of the 1st ECCV, pp. 107–117. Springer, Berlin (1990) Google Scholar
  31. 31.
    Faugeras, O.D., Papadopoulo, T.: A theory of the motion fields of curves. Int. J. Comput. Vis. 10(2), 125–156 (1993) CrossRefGoogle Scholar
  32. 32.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–714 (1986) CrossRefGoogle Scholar
  33. 33.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1987) CrossRefGoogle Scholar
  34. 34.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 59–369 (1998) MathSciNetGoogle Scholar
  35. 35.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995) CrossRefGoogle Scholar
  36. 36.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging Vision and Graphics. Springer, Berlin (2003). ISBN:0387954880 MATHGoogle Scholar
  37. 37.
    Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003) CrossRefGoogle Scholar
  38. 38.
    Shi, J., Fowlkes, C., Martin, D., Sharon, E.: Graph based image segmentation tutorial. CVPR, 2004. http://www.cis.upenn.edu/~jshi/GraphTutorial/
  39. 39.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004) CrossRefGoogle Scholar
  40. 40.
    Arora, S., Acharya, J., Verma, A., Panigrahi, P.K.: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognit. Lett. 29(2), 119–125 (2008) CrossRefGoogle Scholar
  41. 41.
    Benboudjema, D., Pieczynski, W.: Unsupervised statistical segmentation of nonstationary images using triplet Markov fields. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1367–1378 (2007) CrossRefGoogle Scholar
  42. 42.
    Xie, X., Mirmehdi, M.: MAC: magnetostatic active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 632–646 (2008) CrossRefGoogle Scholar
  43. 43.
    Gibson, C.G.: Elementary Geometry of Algebraic Curves. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  44. 44.
    Acton, F.: Numerical Methods that Work. Harper & Row, New York (1970) MATHGoogle Scholar
  45. 45.
    Ghosh, B.K., Inaba, H., Takahashi, S.: Identification of Riccati dynamics under perspective and orthographic observations. IEEE Trans. Autom. Control 45(7), 1267–1278 (2000) MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Unel, M., Ghosh, B.K.: Dynamic models of planar algebraic curves. In: Proc. of IEEE CDC 2001, vol. 2, pp. 1304–1309 (2001) Google Scholar
  47. 47.
    Unel, M., Ghosh, B.K.: Motion estimation of plane polynomial curves. In: Proc. of ACC 2005, pp. 1289–1294 (2005) Google Scholar
  48. 48.
    Unel, M., Sabanovic, A., Yilmaz, B., Dogan, E.: Visual motion and structure estimation using sliding mode observers. Int. J. Syst. Sci. 39(2), 149–161 (2008) CrossRefMathSciNetGoogle Scholar
  49. 49.
    Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–593 (1997) CrossRefGoogle Scholar
  50. 50.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, New York (1990) MATHGoogle Scholar
  51. 51.
    Benhimane, S., Malis, E.: Real-time image-based tracking of planes using efficient second-order minimization. In: IEEE/RSJ International Conference on Intelligent Robots Systems, pp. 943–948 (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mustafa Unel
    • 1
  • Bijoy K. Ghosh
    • 2
  • Ahmet Y. Yazicioglu
    • 3
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityTuzlaTurkey
  2. 2.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA
  3. 3.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations