Advertisement

Journal of Mathematical Imaging and Vision

, Volume 36, Issue 2, pp 111–124 | Cite as

Characterization and Detection of Toric Loops in n-Dimensional Discrete Toric Spaces

  • John Chaussard
  • Gilles Bertrand
  • Michel Couprie
Article
  • 59 Downloads

Abstract

Since a toric space is not simply connected, it is possible to find in such spaces some loops which are not homotopic to a point: we call them toric loops. Some applications, such as the study of the relationship between the geometrical characteristics of a material and its physical properties, rely on three-dimensional discrete toric spaces and require detecting objects having a toric loop.

In this work, we study objects embedded in discrete toric spaces, and propose a new definition of loops and equivalence of loops. Moreover, we introduce a characteristic of loops that we call wrapping vector: relying on this notion, we propose a linear time algorithm which detects whether an object has a toric loop or not.

Fluid flow Fluid flow simulation Grains Porous material Torus Loop Toric loop Wrapped subset Homotopy Toric space Wrapping vector Fundamental group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, Amsterdam (1972) Google Scholar
  2. 2.
    Bertrand, G., Couprie, M., Passat, N.: A note on 3-D simple points and simple-equivalence. Inf. Process. Lett. 13(109), 700–704 (2009) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chaussard, J., Bertrand, G., Couprie, M.: Characterizing and detecting toric loops in n-dimensional discrete toric spaces. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI. Lecture Notes in Computer Science, vol. 4992. Springer, Berlin (2008) Google Scholar
  4. 4.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley Longman, Boston (1994) zbMATHGoogle Scholar
  5. 5.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) zbMATHGoogle Scholar
  6. 6.
    Kong, T.Y.: A digital fundamental group. Comput. Graph. 13(2), 159–166 (1989) CrossRefGoogle Scholar
  7. 7.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989) CrossRefGoogle Scholar
  8. 8.
    Malgouyres, R.: Computing the fundamental group in digital spaces. Int. J. Pattern Recogn. Artif. Intell. 15(7), 1053–1074 (2001) CrossRefGoogle Scholar
  9. 9.
    Maunder, C.: Algebraic Topology. Dover, New York (1996) Google Scholar
  10. 10.
    Poincaré, H.: Analysis situs. J. Ecole Polytech., Sér. 2 1, 1–121 (1895) Google Scholar
  11. 11.
    Stillwell, J.: Classical Topology and Combinatorial Group Theory. Springer, Berlin (1980) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John Chaussard
    • 1
  • Gilles Bertrand
    • 1
  • Michel Couprie
    • 1
  1. 1.Université Paris EstNoisy le Grand CedexFrance

Personalised recommendations