An Optimal Control Formulation of an Image Registration Problem

Article

Abstract

The basic idea of image registration is to find a reasonable transformation of an image so that the resulting difference between it and another image is made small. We derive an optimal control method for determining such a transformation; the approach is based on the grid deformation method and seeks to minimize an objective functional that measures the difference between the transformed image and the reference image. The existence of an optimal transformation is proved as is the applicability of the Lagrange multiplier method. Then, an optimality system from which optimal transformations can be obtained is derived.

Keywords

Image registration Optimal control problem Grid deformation method Optimal solution Lagrange multipliers 

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975) MATHGoogle Scholar
  2. 2.
    Amit, Y.: A nonlinear variational problem for image matching. SIAM J. Sci. Comput. 15(1), 207–224 (1994) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Antoine Maintz, J.B., Vierge, M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998) CrossRefGoogle Scholar
  4. 4.
    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Computer Science and Applied Mathematics. Academic Press, New York (1982) MATHGoogle Scholar
  5. 5.
    Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 3rd edn. Wiley, New York (1978) MATHGoogle Scholar
  6. 6.
    Bochev, P., Liao, G., dela Pena, G.: Analysis and computation of adaptive moving grids by deformation. Numer. Methods Partial Differ. Equ. 12(4), 489–506 (1996) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996) CrossRefGoogle Scholar
  8. 8.
    Droske, M., Ring, W.: A Mumford-Shah level-set approach for geometric image registration. SIAM J. Appl. Math. 66(6), 2127–2148 (2006) (electronic) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587–600 (1998) MATHMathSciNetGoogle Scholar
  10. 10.
    Fischer, B., Modersitzki, J.: Curvature based image registration. J. Math. Imaging Vis. 18(1), 81–85 (2003). Special issue on imaging science (Boston, MA, 2002) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Advances in Design and Control, vol. 5. SIAM, Philadelphia (2003) MATHGoogle Scholar
  12. 12.
    Haber, E., Heldmann, S., Modersitzki, J.: An octree method for parametric image registration. SIAM J. Sci. Comput. 29(5), 2008–2023 (electronic) Google Scholar
  13. 13.
    Haber, E., Modersitzki, J.: Numerical methods for volume preserving image registration. Inverse Probl. 20(5), 1621–1638 (2004) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM J. Sci. Comput. 27(5), 1594–1607 (2006) (electronic) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Henn, S.: A full curvature based algorithm for image registration. J. Math. Imaging Vis. 24(2), 195–208 (2006) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Henn, S., Witsch, K.: Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput. 23(4), 1077–1093 (2001) (electronic) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Liao, G., Pan, T.w., Su, J.: Numerical grid generator based on Moser’s deformation method. Numer. Methods Partial Differ. Equ. 10(1), 21–31 (1994) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Liao, G., Cai, X., Fleitas, D., Luo, X., Wang, J., Xue, J.: Optimal control approach to data set alignment. Appl. Math. Lett. 21(9), 898–905 (2007) CrossRefMathSciNetGoogle Scholar
  19. 19.
    McLachlan, R.I., Marsland, S.: Discrete mechanics and optimal control for image registration. ANZIAM J. 48(C), C1–C16 (2007) MathSciNetGoogle Scholar
  20. 20.
    Modersitzki, J.: Numerical Methods for Image Registration Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004) MATHGoogle Scholar
  21. 21.
    Rama Mohana Rao, M.: Ordinary Differential Equations. Affiliated East-West Press Pvt. Ltd., New Delhi (1980). Theory and applications, with a foreword by V. Lakshmikantham MATHGoogle Scholar
  22. 22.
    Semper, B., Liao, G.: A moving grid finite-element method using grid deformation. Numer. Methods Partial Differ. Equ. 11(6), 603–615 (1995) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Unal, G., Slabaugh, G.: Estimation of vector fields in unconstrained and inequality constrained variational problems for segmentation and registration. J. Math. Imaging Vis. 31(1), 57–72 (2008) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. II/A. Springer, New York (1990). Linear monotone operators, translated from the German by the author and Leo F. Boron Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Scientific ComputingFlorida State University, Dirac Science LibraryTallahasseeUSA
  2. 2.Department of Computational Science and EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations