Fast Two-Phase Image Deblurring Under Impulse Noise

Article

Abstract

In this paper, we propose a two-phase approach to restore images corrupted by blur and impulse noise. In the first phase, we identify the outlier candidates—the pixels that are likely to be corrupted by impulse noise. We consider that the remaining data pixels are essentially free of outliers. Then in the second phase, the image is deblurred and denoised simultaneously by a variational method by using the essentially outlier-free data. The experiments show several dB’s improvement in PSNR with respect to the typical variational methods.

Keywords

Deblurrind Impulse noise Two-phase methods 

References

  1. 1.
    Astola, J., Kuosmanen, P.: Fundamentals of Nonlinear Digital Filtering. CRC, Boca Raton (1997) Google Scholar
  2. 2.
    Bar, L., Sochen, N., Kiryati, N.: Image deblurring in the presence of salt-and-pepper noise. In: Proceeding of 5th International Conference on Scale Space and PDE methods in Computer Vision. LNCS, vol. 3439, pp. 107–118. Springer, Berlin (2005) Google Scholar
  3. 3.
    Bar, L., Sochen, N., Kiryati, N.: Image deblurring in the presence of impulsive noise. Int. J. Comput. Vis. 70, 279–298 (2006) CrossRefGoogle Scholar
  4. 4.
    Bar, L., Brook, A., Sochen, N., Kiryati, N.: Deblurring of color images corrupted by salt-and-pepper noise. IEEE Trans. Image Process. 16, 1101–1111 (2007) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bar, L., Sochen, N., Kiryati, N.: Convergence of an iterarive method for variational deconvolution and impulsive noise removal. SIAM J. Multiscale Model. Simul. 6, 983–994 (2007) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bovik, A.: Handbook of Image and Video Processing. Academic Press, New York (2000) MATHGoogle Scholar
  7. 7.
    Cai, J.-F., Chan, R.H., Nikolova, M.: Two-phase methods for deblurring images corrupted by impulse plus Gaussian noise. Inverse Probl. Imaging 2, 187–204 (2008) MATHMathSciNetGoogle Scholar
  8. 8.
    Chan, R.H., Hu, C., Nikolova, M.: An iterative procedure for removing random-valued impulse noise. IEEE Signal Process. Lett. 11, 921–924 (2004) CrossRefGoogle Scholar
  9. 9.
    Chan, R.H., Ho, C.W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detector and edge-preserving regularization. IEEE Trans. Image Process. 14, 1479–1485 (2005) CrossRefGoogle Scholar
  10. 10.
    Demoment, G.: Image reconstruction and restoration: overview of common estimation structure and problems. IEEE Trans. Acoust. Speech Signal Process., ASSP 37(12), 2024–2036 (1989) CrossRefGoogle Scholar
  11. 11.
    Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14, 1747–1754 (2005) CrossRefGoogle Scholar
  12. 12.
    Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (1993) Google Scholar
  13. 13.
    Hwang, H., Haddad, R.A.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4, 499–502 (1995) CrossRefGoogle Scholar
  14. 14.
    Ko, S.-J., Lee, Y.H.: Center weighted median filters and their applications to image enhancement. IEEE Trans. Circuits Syst. 38, 984–993 (1991) CrossRefGoogle Scholar
  15. 15.
    Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40, 965–994 (2002) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20, 99–120 (2004) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, Amsterdam (1987) MATHGoogle Scholar
  18. 18.
    Tikhonov, A., Arsenin, V.: Solutions of Ill-Posed Problems. Winston (1977) Google Scholar
  19. 19.
    Vogel, C.: Computational Methods for Inverse Problems. Frontiers in Applied Mathematics Series, vol. 23. SIAM, New York (2002) MATHGoogle Scholar
  20. 20.
    Vogel, C.R., Oman, M.E.: Iterative method for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian-Feng Cai
    • 1
  • Raymond H. Chan
    • 2
  • Mila Nikolova
    • 3
  1. 1.Department of MathematicsUCLALos AngelesUSA
  2. 2.Department of MathematicsThe Chinese University of Hong KongShatinHong Kong
  3. 3.Centre de Mathématiques et de Leurs Applications, ENS de CachanCNRS, PRES UniverSudCachan CedexFrance

Personalised recommendations