Journal of Mathematical Imaging and Vision

, Volume 36, Issue 1, pp 1–27 | Cite as

Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model

  • Robert K. Hladky
  • Scott D. PaulsEmail author


We investigate solutions to the minimal surface problem with Dirichlet boundary conditions in the roto-translation group equipped with a sub-Riemannian metric. By work of G. Citti and A. Sarti, such solutions are completions of occluded visual data when using a model of the first layer of the visual cortex. Using a characterization of smooth non-characteristic minimal surfaces as ruled surfaces, we give a method to compute a minimal spanning surface given fixed boundary data presuming such a surface exists. Moreover, we describe a number of obstructions to existence and uniqueness but also show that under suitable conditions, smooth minimal spanning surfaces with good properties exist. Not only does this provide an explicit realization of the disocclusion process for the neurobiological model, but it also has application to constructing disocclusion algorithms in digital image processing.


Minimal surfaces Sub-Riemannian geometry Roto-translation group Visual cortex Image reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound. 5(1), 63–81 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barone Adesi, V., Serra Cassano, F., Vittone, D.: The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations. Calc. Var. Partial Differ. Equ. 30(1), 17–49 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben-Shahar, O., Zucker, S.W.: The perceptual organization of texture flow: A contextual inference approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 401–417 (2003) CrossRefGoogle Scholar
  4. 4.
    Ben-Shahar, O., Zucker, S.W.: Hue geometry and horizontal connections. Neural Netw. 17(5–6), 753–771 (2004). Special Issue on Vision and Brain CrossRefGoogle Scholar
  5. 5.
    Capogna, L., Citti, G.: Generalized mean curvature flow in Carnot groups. Commun. PDE (2009, to appear) Google Scholar
  6. 6.
    Capogna, L., Citti, G., Manfredini, M.: Smoothness of Lipschitz intrinsic minimal graphs in the Heisenberg group H n,n>1. Crelle’s J. (2009, to appear) Google Scholar
  7. 7.
    Cheng, J.H., Hwang, J.F.: Properly embedded and immersed minimal surfaces in the Heisenberg group. Bull. Aust. Math. Soc. 70(3), 507–520 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cheng, J.H., Hwang, J.F., Malchiodi, A., Yang, P.: Minimal surfaces in pseudohermitian geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(1), 129–177 (2005) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Cheng, J.H., Hwang, J.F., Yang, P.: Existence and uniqueness for p-area minimizers in the Heisenberg group. Math. Ann. 337(2), 253–293 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cheng, J.H., Hwang, J.F., Yang, P.: Regularity of C 1 smooth surfaces with prescribed p-mean curvature in the Heisenberg group. Math. Ann. 344(1), 1–35 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Citti, G., Manfredini, M., Sarti, A.: Neuronal oscillation in the visual cortex: Gamma-convergence to the Riemannian Mumford-Shah functional. SIAM J. Math. Anal. 35(6), 1394–1419 (2003) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24, 307–326 (2006) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Cole, D.: On minimal surfaces in Martinet-type spaces. PhD thesis, Dartmouth College (2005) Google Scholar
  14. 14.
    Danielli, D., Garofalo, N., Nhieu, D.M.: Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv. Math. 215(1), 292–378 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Danielli, D., Garofalo, N., Nhieu, D.M.: A partial solution of the isoperimetric problem for the Heisenberg group. Forum Math. 20(1), 99–143 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Danielli, D., Garofalo, N., Nhieu, D.M.: A notable family of entire intrinsic minimal graphs in the Heisenberg group which are not perimeter minimizing. Am. J. Math. 130(2), 317–339 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Danielli, D., Garofalo, N., Nhieu, D.M., Pauls, S.: Instability of graphical strips and a positive answer to the Bernstein problem in the Heisenberg group. J. Differ. Geom. 81(2), 251–296 (2009) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Farid, H., Simoncelli, E.P.: Differentiation of multi-dimensional signals. IEEE Trans. Image Process. 13(4), 496–508 (2004) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Field, D.J., Hess, A., Hayes, R.: Contour integration by the human visual system: Evidence for a local association field. Vis. Res. 33(2), 173–193 (1993) CrossRefGoogle Scholar
  20. 20.
    Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Gilbert, C.D., Das, A., Ito, M., Westheimer, G.: Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA 93, 615–622 (1996) CrossRefGoogle Scholar
  22. 22.
    Hladky, R.K., Pauls, S.D.: Constant mean curvature surfaces in sub-Riemannian spaces. J. Differ. Geom. 79(1), 111–140 (2008) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Hoffman, W.C.: The visual cortex is a contact bundle. Appl. Math. Comput. 32(2–3), 137–167 (1989). Mathematical Biology zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Hubel, D.H., Weisel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962) Google Scholar
  25. 25.
    Hubel, D.H., Weisel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. (Biol.) 198, 1–59 (1977) CrossRefGoogle Scholar
  26. 26.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley, New York (1963) zbMATHGoogle Scholar
  27. 27.
    Leonardi, G.P., Masnou, S.: On the isoperimetric problem in the Heisenberg group H n. Ann. Mat. Pura Appl. 184(4), 533–553 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kimia, B., Frankel, I., Popescu, A.: Euler spiral for shape completion. Int. J. Comput. Vis. 54(1–3), 159–182 (2003) zbMATHGoogle Scholar
  29. 29.
    Leonardi, G.P., Rigot, S.: Isoperimetric sets on Carnot groups. Houst. J. Math. 29(3), 609–637 (2003) (electronic) zbMATHMathSciNetGoogle Scholar
  30. 30.
    Monti, R.: Heisenberg isoperimetric problem. The axial case. Adv. Calc. Var. 1(1), 93–121 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Monti, R., Serra Cassano, F., Vittone, D.: A negative answer to the Bernstein problem for intrinsic graphs in the Heisenberg group. Boll. Unione Mat. Ital. 9(3), 709–727 (2008) MathSciNetGoogle Scholar
  32. 32.
    Parent, P., Zucker, S.W.: Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 823–839 (1989) CrossRefGoogle Scholar
  33. 33.
    Pauls, S.D.: H-minimal graphs of low regularity in the Heisenberg group. Commun. Math. Helv. 81, 337–384 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Pauls, S.D.: Minimal surfaces in the Heisenberg group. Geom. Dedic. 104, 201–231 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Petitot, J.: The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. 97, 265–309 (2003) Google Scholar
  36. 36.
    Petitot, J., Tondut, Y.: Vers une neuro-geometrie. fibrations corticales, structures de contact et contours subjectifs modaux. Math. Inf. Sci. Hum. EHESS, Paris 145, 5–101 (1998) Google Scholar
  37. 37.
    Ritoré, M., Rosales, C.: Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group ℍn. J. Geom. Anal. 16(4), 703–720 (2006) zbMATHMathSciNetGoogle Scholar
  38. 38.
    Ritoré, M., Rosales, C.: Area-stationary surfaces in the Heisenberg group \(\Bbb{H}\sp 1\). Adv. Math. 219(2), 633–671 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Ritoré, M.: Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group \(\Bbb{H}\sp 1\) with low regularity. Calc. Var. Part. Differ. Equ. 34(2), 179–192 (2009) zbMATHCrossRefGoogle Scholar
  40. 40.
    Sigman, M., Cecchi, G., Gilbert, C., Magnasco, M.: On a common circle: Natural scenes and Gestalt rules. PNAS 98(4), 1935–1940 (2001) CrossRefGoogle Scholar
  41. 41.
    Tanaka, N.: A Differential Geometric Study on Strongly Pseudoconvex Manifolds. Kinokuniya Book-Store (1975) Google Scholar
  42. 42.
    Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differ. Geom. 13, 25–41 (1978) zbMATHMathSciNetGoogle Scholar
  43. 43.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt. Psychol. Forsch. 4, 301–350 (1923) (condensed and translated as “Laws of organization in perceptual forms”, in A Source Book of Gestalt Psychology ed. by W.D. Ellis (1938, New York: Harcourt Brace), pp. 71–88) CrossRefGoogle Scholar
  44. 44.
    Wertheimer, M.: Ueber Gestalttheorie, Lecture Before the Kant Gesellschaft (reprinted in translation in A Source Book of Gestalt Psychology ed. by W.D. Ellis (1938, New York: Harcourt, Brace), pp. 1–11) Google Scholar
  45. 45.
    Zhou, Z., Samonds, J., Bernard, M., Bonds, A.: Synchronous activity in cat visual cortex encodes collinear and cocircular contours. J. Vis. 5(8), 675a (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsNorth Dakota State UniversityFargoUSA
  2. 2.Department of MathematicsDartmouth CollegeHanoverUSA

Personalised recommendations