Advertisement

Journal of Mathematical Imaging and Vision

, Volume 35, Issue 1, pp 36–50 | Cite as

An Algebraic Approach to Lens Distortion by Line Rectification

  • Luis Alvarez
  • Luis GómezEmail author
  • J. Rafael Sendra
Article

Abstract

A very important property of the usual pinhole model for camera projection is that 3D lines in the scene are projected in 2D lines. Unfortunately, wide-angle lenses (specially low-cost lenses) may introduce a strong barrel distortion which makes the usual pinhole model fail. Lens distortion models try to correct such distortion. In this paper, we propose an algebraic approach to the estimation of the lens distortion parameters based on the rectification of lines in the image. Using the proposed method, the lens distortion parameters are obtained by minimizing a 4 total-degree polynomial in several variables. We perform numerical experiments using calibration patterns and real scenes to show the performance of the proposed method.

Keywords

Radial lens distortion Edge line rectification Linear regression Algebraic approach Minimal residual variance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993) Google Scholar
  2. 2.
    Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001) zbMATHGoogle Scholar
  3. 3.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987) CrossRefGoogle Scholar
  4. 4.
    Brown, D.C.: Close-range camera calibration. Photogramm. Eng. 37, 855–866 (1971) Google Scholar
  5. 5.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004) zbMATHGoogle Scholar
  6. 6.
    McGlone, C. (ed): Manual of Photogrammetry, 4th edn. Am. Soc. of Photogrammetry, Falls Church (1980) Google Scholar
  7. 7.
    Brown, D.C.: Decentering distortion of lenses. Photogramm. Eng. 32(3), 444–462 (1966) Google Scholar
  8. 8.
    Kang, S.B.: Semiautomatic methods for recovering radial distortion parameters from a single image. Digital CRL. Technical Report CRL 97/3 (1997) Google Scholar
  9. 9.
    Swaminathan, R., Nayar, S.K.: Non-metric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1172–1178 (2000) CrossRefGoogle Scholar
  10. 10.
    Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001) CrossRefGoogle Scholar
  11. 11.
    El-Melegy, T.M., Farag, A.A.: Nonmetric lens distortion calibration: Closed-form solutions, robust estimation and model selection. In: ICCV 03: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 1(1), pp. 554–559 (2003) Google Scholar
  12. 12.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000) CrossRefGoogle Scholar
  13. 13.
    Steele, J.M.: The Cauchy Schwarz Master Class. Cambridge University Press, Cambridge (2004) zbMATHGoogle Scholar
  14. 14.
    Winkler, F.: Polynomial Algorithms in Computer Algebra. Springer, New York (1996) zbMATHGoogle Scholar
  15. 15.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer, New York (1997) Google Scholar
  16. 16.
    Sendra, J.R., Winkler, F., Perez-Daz, S.: Rational Algebraic Curves: A Computer Algebra Approach. Springer, Berlin (2007) Google Scholar
  17. 17.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998) zbMATHGoogle Scholar
  18. 18.
    Deriche, R.: Fast algorithms for low-level vision. IEEE Trans. Pattern Anal. Mach. Intell. 1(12), 78–88 (1990) CrossRefGoogle Scholar
  19. 19.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Applied Mathematical Sciences, vol. 147. Springer, Berlin (2006) zbMATHGoogle Scholar
  20. 20.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (1993) zbMATHGoogle Scholar
  21. 21.
    Jonasson, K.: A projected conjugate gradient method for sparse minimax problems. Numer. Algorithms 5, 309–323 (1993) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de Informática y SistemasUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Departamento de Ingeniería Electrónica y AutomáticaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  3. 3.Departamento de MatemáticasUniversidad de AlcaláMadridSpain

Personalised recommendations