Journal of Mathematical Imaging and Vision

, Volume 34, Issue 3, pp 259–269 | Cite as

Symmetries of 2-D Images: Cases without Periodic Translations

Article

Abstract

The different ways in which images, defined as scalar functions of the Euclidean plane, can be symmetrical is considered. The symmetries analyzed are relative to the class of image isometries, each of which is a combined spatial and intensity isometry. All symmetry types, apart from those with discrete periodic translations, are derived. Fifteen such types are found, including one that has not previously been reported. The novel type occurs when an image has a continuous line of centres of symmetry each like the one found in the Taiji (Yin-Yang) symbol.

Keywords

Image structure Isomorphism Group theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosen, J.: Resource letter SP-2: Symmetry and group theory in physics. Am. J. Phys. 49(4), 304–319 (1981) CrossRefGoogle Scholar
  2. 2.
    Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  3. 3.
    Hahn, T.: Space-Group Symmetry. International Tables for Crystallography, vol. A. International Union of Crystallography, Chester (2006) Google Scholar
  4. 4.
    Klein, F.: A comparative review of recent researches in geometry (trans. by MW Haskell). Bull. NY Math. Soc. 2, 215–249 (1892) CrossRefGoogle Scholar
  5. 5.
    Baylis, G.C., Driver, J.: Perception of symmetry and repetition within and across visual shapes: Part-descriptions and object-based attention. Vis. Cogn. 8(2), 163–196 (2001) CrossRefGoogle Scholar
  6. 6.
    Levi, D.M., Saarinen, J.: Perception of mirror symmetry in amblyopic vision. Vis. Res. 44(21), 2475–2482 (2004) CrossRefGoogle Scholar
  7. 7.
    Oka, S., : VEPs elicited by local correlations and global symmetry: Characteristics and interactions. Vis. Res. 47(16), 2212–2222 (2007) CrossRefGoogle Scholar
  8. 8.
    Sally, S., Gurnsey, R.: Symmetry detection across the visual field. Spat. Vis. 14(2), 217–234 (2001) CrossRefGoogle Scholar
  9. 9.
    Braitenberg, V.: Vehicles. Experiments in Synthetic Psychology. MIT Press, Cambridge (1984) Google Scholar
  10. 10.
    Perrett, D.: Symmetry and human facial attractiveness. Evol. Hum. Behav. 20(5), 295–307 (1999) CrossRefGoogle Scholar
  11. 11.
    Cairns, P., Thimbleby, H.: Affordance and symmetry in user interfaces. Comput. J. 51, 650–661 (2008) CrossRefGoogle Scholar
  12. 12.
    Bonneh, Y., Reisfeld, D., Yeshurun, Y.: Quantification of local symmetry—application to texture-discrimination. Spat. Vis. 8(4), 515–530 (1994) CrossRefGoogle Scholar
  13. 13.
    Mellor, M., Brady, M.: A new technique for local symmetry estimation. In: Scale Space and Pde Methods in Computer Vision, Proceedings, vol. 3459, pp. 38–49 (2005) Google Scholar
  14. 14.
    Scognamillo, R., : A feature-based model of symmetry detection. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 270(1525), 1727–1733 (2003) CrossRefGoogle Scholar
  15. 15.
    Liu, Y.X., Collins, R.T., Tsin, Y.H.: A computational model for periodic pattern perception based on frieze and wallpaper groups. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 354–371 (2004) CrossRefGoogle Scholar
  16. 16.
    Griffin, L.D.: Symmetries of 1-D images. J. Math. Imaging Vis. 31(2–3), 157–164 (2008) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Yale, P.B.: Geometry and Symmetry. Dover, New York (1968) MATHGoogle Scholar
  18. 18.
    Koenderink, J.J., van Doorn, A.J.: Image processing done right. In: Computer Vision—Eccv 2002, Pt 1, pp. 158–172 (2002) Google Scholar
  19. 19.
    Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. AK Peters, Wellesley (2008) MATHGoogle Scholar
  20. 20.
    Browne, C.: Taiji variations: yin and yang in multiple dimensions. Comput. Graph. 31(1), 142–146 (2007) CrossRefGoogle Scholar
  21. 21.
    Schattschneider, D.: MC Escher. Visions of Symmetry. Plenum, New York (1990) Google Scholar
  22. 22.
    Loeb, A.A.: Color and Symmetry. Krieger, Melbourne (1978) Google Scholar
  23. 23.
    Shubnikov, A.V., Kopstik, V.A.: Symmetry in Science and Art. Plenum, New York (1974) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Computer ScienceUniversity College LondonLondonUK

Personalised recommendations