Advertisement

Journal of Mathematical Imaging and Vision

, Volume 34, Issue 2, pp 165–184 | Cite as

Digital Topology on Adaptive Octree Grids

  • Ying BaiEmail author
  • Xiao Han
  • Jerry L. Prince
Article

Abstract

The theory of digital topology is used in many different image processing and computer graphics algorithms. Most of the existing theories apply to uniform cartesian grids, and they are not readily extensible to new algorithms targeting at adaptive cartesian grids. This article provides a rigorous extension of the classical digital topology framework for adaptive octree grids, including the characterization of adjacency, connected components, and simple points. Motivating examples, proofs of the major propositions, and algorithm pseudocodes are provided.

Keywords

Digital topology Adaptive octree grid Simple point characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayala, R., Dominguez, E., Frances, A., Quintero, A.: Homotopy in digital spaces. Discrete Appl. Math. 125, 3–24 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bai, Y., Han, X., Prince, J.L.: Octree-based topology-preserving isosurface simplification. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, New York, June 2006 Google Scholar
  3. 3.
    Bai, Y., Han, X., Prince, J.L.: Octree grid topology preserving geometric deformable models for 3D medical image segmentation. In: Information Processing in Medical Imaging (2007) Google Scholar
  4. 4.
    Bazin, P., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. Med. Imag. 26(4), 487–496 (2007) CrossRefGoogle Scholar
  5. 5.
    Bazin, P., Ellingsen, L., Pham, D.L.: Digital homeomorphisms in deformable registration. In: Information Processing in Medical Imaging, pp. 211–222 (2007) Google Scholar
  6. 6.
    Bertrand, G.: A new characterization of three-dimensional simple points. Pattern Recogn. Lett. 15, 169–175 (1994) zbMATHCrossRefGoogle Scholar
  7. 7.
    Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recogn. Lett. 15, 1003–1011 (1994) CrossRefGoogle Scholar
  8. 8.
    Bertrand, G., Couprie, M.: A model for digital topology. Discrete Geom. Comput. Imag. 1568, 227–239 (1999) CrossRefGoogle Scholar
  9. 9.
    Brimkov, V., Klette, R.: Border and surface tracing–theoretical foundations. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 577–590 (2008) CrossRefGoogle Scholar
  10. 10.
    de Andrade, M.C., Bertrand, G., de Albuquerde Araujo, A.: Segmentation of microscopic images by flooding simulation: a catchment-basins merging algorithm. In: Proceedings of SPIE: Nonlinear Image Processing VIII (1997) Google Scholar
  11. 11.
    Droske, M., Meyer, B., Schaller, C., Rumpf, M.: An adaptive level set method for medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) Information Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 2082, pp. 416–422. Springer, Berlin (2001) Google Scholar
  12. 12.
    Fourey, S., Malgouyres, R.: A concise characterization of 3D simple points. Discrete Appl. Math. 125, 59–80 (2005) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled distance fields: A general representation of shape for computer graphics. In: SIGGRAH, pp. 249–254 (2000) Google Scholar
  14. 14.
    Han, X., Xu, C., Braga-Neto, U., Prince, J.L.: Topology correction in brain cortex segmentation using a multiscale graph-based approach. IEEE Trans. Med. Imag. 21, 109–121 (2002) CrossRefGoogle Scholar
  15. 15.
    Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25, 755–768 (2003) CrossRefGoogle Scholar
  16. 16.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) zbMATHGoogle Scholar
  17. 17.
    Herman, G.T. (ed.): Geometry of Digital Spaces. Birkhäuser, Basel (1998) zbMATHGoogle Scholar
  18. 18.
    Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. Comput. Aided Des. 39(5), 352–360 (2007) CrossRefGoogle Scholar
  19. 19.
    Kenmochi, Y., Kotani, K., Imiya, A.: Marching cubes method with connectivity. In: International Conference on Image Processing (1999) Google Scholar
  20. 20.
    Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Its Appl. 36, 1–17 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kong, T.Y.: A digital fundamental group. Comput. Graph. 13, 159–166 (1989) CrossRefGoogle Scholar
  22. 22.
    Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recogn. Artif. Intell. 9, 813–844 (1995) CrossRefGoogle Scholar
  23. 23.
    Kong, T.Y.: Foundation of Image Understanding, pp. 73–93. Kluwer Academic, Dordrecht (2001). Chap. Digital topology Google Scholar
  24. 24.
    Kong, T.Y.: Topological adjacency relations on z n. Theor. Comput. Sci. 283, 3–28 (2002) zbMATHCrossRefGoogle Scholar
  25. 25.
    Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. CVGIP, Image Underst. 48, 357–393 (1989) Google Scholar
  26. 26.
    Kong, T.Y., Rosenfeld, A.: If we use 4- or 8-connectedness for both the objects and the background, the Euler characteristics is not locally computable. Pattern Recogn. Lett. 11, 231–232 (1990) zbMATHCrossRefGoogle Scholar
  27. 27.
    Kong, T.Y., Udupa, J.K.: A justification of a fast surface tracking algorithm. CVGIP, Graph. Models Image Process. 54, 162–170 (1992) CrossRefGoogle Scholar
  28. 28.
    Kovalevsky, V.: Axiomatic digital topology. J. Math. Imaging Vis. 26, 41–58 (2006) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Lachaud, J.: Topologically Defined Iso-surfaces. Lecture Notes in Computer Science, vol. 1176, pp. 245–256. Springer, Berlin (1996) Google Scholar
  30. 30.
    Lachaud, J.-O., Montanvert, A.: Continuous analogs of digital boundaries: A topological approach to isosurfaces. Graph. Models 62, 129–164 (2000) CrossRefGoogle Scholar
  31. 31.
    Ma, C.M., Sonka, M.: A fully parallel 3D thinning algorithm and its applications. Comput. Vis. Image Underst. 64, 420–433 (1996) CrossRefGoogle Scholar
  32. 32.
    Malandain, G., Bertrand, G., Ayache, N.: Topological segmentation of discrete surfaces. Int. J. Comput. Vis. 10(2), 183–197 (1993) CrossRefGoogle Scholar
  33. 33.
    Mangin, J., Frouin, V., Bloch, I., Regis, J., Lopez-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5, 297–318 (1995) CrossRefGoogle Scholar
  34. 34.
    Milne, R.B.: Adaptive level sets methods interfaces. Ph.D. Thesis, Dept. Math., UC Berkely (1995) Google Scholar
  35. 35.
    Morgenthaler, D.G.: Three-dimensional simple points: Serial erosion, parallel thinning and skeletonization. Technical Report, Computer Vision Lab., Univ. of Maryland (1981) Google Scholar
  36. 36.
    Natarajan, B.: On generating topologically consistent isosurfaces from uniform samples. Vis. Comput. 11(1), 52–62 (1994) CrossRefGoogle Scholar
  37. 37.
    Nielson, G.M., Hamann, B.: The asymptotic decider: Resolving the ambiguity in marching cubes. In: IEEE Visualization, pp. 83–91, Los Alamitos (1991) Google Scholar
  38. 38.
    Niethammer, M., Kalies, W.D., Mischaikow, K., Tannenbaum, A.: On the detection of simple points in higher dimensions using cubical homology. IEEE Trans. Image Process. 15, 2462–2469 (2006) CrossRefMathSciNetGoogle Scholar
  39. 39.
    Pudney, C.: Distance-ordered homotopic thinning: A skeletonization algorithm for 3d digital images. Comput. Vis. Image Underst. 72, 404–413 (1998) CrossRefGoogle Scholar
  40. 40.
    Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Mach. 17, 146–160 (1970) zbMATHMathSciNetGoogle Scholar
  41. 41.
    Rosenfeld, A.: Arcs and curves in digital pictures. J. Assoc. Comput. Mach. 20, 81–87 (1973) zbMATHMathSciNetGoogle Scholar
  42. 42.
    Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, San Diego (1982) Google Scholar
  43. 43.
    Saha, P., Chaudhuri, B., Majumder, D.: A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recogn. 30, 1939–1955 (1997) CrossRefGoogle Scholar
  44. 44.
    Saha, P.K., Chaudhuri, B.B.: Detection of 3D simple points for topology preserving transformation with application to thinning. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1028–1032 (1994) CrossRefGoogle Scholar
  45. 45.
    Saha, P.K., Chaudhuri, B.B.: 3D digital topology under binary transformation with applications. Comput. Vis. Image Underst. 63, 418–429 (1996) CrossRefGoogle Scholar
  46. 46.
    Segonne, F., Pons, J.-P., Grimson, E., Fischl, B.: Active contours under topology control genus preserving level sets. In: Computer Vision for Biomedical Image Applications, pp. 135–145 (2005) Google Scholar
  47. 47.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Stelldinger, P., Latecki, L., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007) CrossRefGoogle Scholar
  49. 49.
    Teo, P., Sapiro, G., Wandell, B.: Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans. Med. Imag. 16, 852–863 (1997) CrossRefGoogle Scholar
  50. 50.
    Tsitsiklis, J.N.: Efficient algorithm for globally optimal trajectories. IEEE Trans. Automat. Contr. 40(9), 1528–1538 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Udupa, J.K.: Multidimensional digital boundaries. CVGIP, Graph. Models Image Process. 56, 311–323 (1994) CrossRefGoogle Scholar
  52. 52.
    Xie, W., Thompson, R.P., Perucchio, R.: A topology-preserving parallel 3d thinning algorithm for extracting the curve skeleton. Pattern Recogn. 36, 1529–1544 (2003) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.CMS Software, Elekta Inc.St. LouisUSA

Personalised recommendations