A-contrario Detectability of Spots in Textured Backgrounds

  • Bénédicte Grosjean
  • Lionel Moisan


Using the a-contrario framework recently introduced in the modeling of human visual perception, we build a statistical model to predict the detectability of a spot on a textured background. Contrary to classical formalisms (ideal observer and its extensions), which assume a known probability distribution for the signal to be detected, the a-contrario observer we build only relies on gestalt-driven measurements and on an approximate representation of the background texture. It extends the scope of previous a-contrario detectors by using a non-i.i.d. naive model and a notion of local context. The models we propose are first validated theoretically in the case of powerlaw textures, which are, in particular, classical models for mammograms. Then, going to more general microtextures (colored noise processes), we compute the relationship between the size of a spot and the minimum contrast required to reach a given detectability threshold according to the a-contrario observer. Three main types of microtextures pop out from this characterization, and in particular low-frequency textures for which curiously enough, the contrast being given, the most salient spots are the smallest ones. Last, we illustrate the interest of the a-contrario observer for two real applications: the detectability of opacities in mammograms and the perception of stains on pieces of clothing.


A-contrario Detection Texture Colored noise process Powerlaw Fractional Brownian motion Mammography 


  1. 1.
    Alvarez, L., Gousseau, Y., Morel, J.-M.: The size of objects in natural and artificial images. Adv. Imaging Electron Phys. 111, 167–242 (1999) Google Scholar
  2. 2.
    Barrett, H.H., Yao, J., Rolland, J.P., Myers, K.J.: Model observers for assessment of image quality. Proc. Natl. Acad. Sci. USA 90, 9758–9765 (1993) CrossRefGoogle Scholar
  3. 3.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966) Google Scholar
  5. 5.
    Burgess, A.E.: Mammographic structures: data preparation and spatial statistics analysis. In: Hanson, K. (ed.) Medical Imaging 1998, Image Processing. Proceedings of the Society of Photo-optical Instrumentation Engineers, vol. 3661, pp. 642–653. Society of Photo Optical, San Diego (1998) Google Scholar
  6. 6.
    Burgess, A.E., Jacobson, F.L., Judy, P.F.: Human observer detection experiments with mammograms and power-law noise. Med. Phys. 28(4), 419–437 (2001) CrossRefGoogle Scholar
  7. 7.
    Burgess, A.E., Jacobson, F.L., Judy, P.F.: Lesion detection in digital mammograms. In: Proceedings of SPIE, Medical Imaging, vol. 4320, pp. 555–560. SPIE, Bellingham (2001) Google Scholar
  8. 8.
    Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. Int. J. Comput. Vis. 40(1), 7–23 (2000) zbMATHCrossRefGoogle Scholar
  9. 9.
    Desolneux, A., Moisan, L., Morel, J.-M.: Edge detection by Helmholtz principle. J. Math. Imaging Vis. 14, 271–284 (2001) zbMATHCrossRefGoogle Scholar
  10. 10.
    Desolneux, A., Moisan, L., Morel, J.-M.: Computational gestalts and perception thresholds. J. Physiology 97(2–3), 311–324 (2003). Paris, special issue on neurogeometry and visual perception Google Scholar
  11. 11.
    Desolneux, A., Moisan, L., Morel, J.-M.: In: From Gestalt Theory to Image Analysis—A Probabilistic Approach. Interdisciplinary Applied Mathematics, vol. 34. Springer, New York (2008) Google Scholar
  12. 12.
    Dibos, F., Pelletier, S., Koepfler, G.: Real-time segmentation of moving objects in a video sequence by a contrario detection. In: Proceedings of Int. Conf. Image Processing, vol. 1, pp. 1065–1068 (2005) Google Scholar
  13. 13.
    Eckstein, M.P., Abbey, C.K., Bochud, F.O.: In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) A practical guide to model observers for visual detection in synthetic and natural noisy images. Handbook of Medical Imaging Physics and Psychophysics, pp. 593–628. SPIE Press, Bellingham (2000). Chap. 10 Google Scholar
  14. 14.
    Gandhi, P.P., Kassam, S.A.: Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 24(4), 427–445 (1988) CrossRefGoogle Scholar
  15. 15.
    Grosjean, B., Muller, S., Souchay, H.: Lesion detection using an a-contrario detector in simulated digital mammograms. In: Proceedings of SPIE, Medical Imaging, vol. 6146, pp. 216–227. SPIE, Bellingham (2006) Google Scholar
  16. 16.
    Heine, J.J., Velthuizen, R.P.: Spectral analysis of full field digital mammography data. Med. Phys. 29(5), 647–661 (2002) CrossRefGoogle Scholar
  17. 17.
    Kanizsa, G.: Grammatica del Vedere (La grammaire du voir, Diderot Editeur, Arts et Sciences, 1996). Il Mulino, Bologna (1980) Google Scholar
  18. 18.
    Kay, M.: Fundamentals of statistical signal processing. In: Detection Theory, vol. II. Prentice Hall, Englewood Cliffs (1998) Google Scholar
  19. 19.
    Khurd, P., Gindi, G.: Decision strategies that maximize the area under the LROC curve. IEEE Trans. Med. Imag. 24(12), 1626–1636 (2005) CrossRefGoogle Scholar
  20. 20.
    Kotre, C.J.: The effect of background structure on the detection of low contrast objects in mammography. Br. J. Radiol. 71, 1162–1167 (1998) Google Scholar
  21. 21.
    Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. Comput. Vis. 57(3), 201–218 (2004) CrossRefGoogle Scholar
  22. 22.
    Robey, F.C., Fuhrmann, D.R., Kelly, E.J., Nitzberg, R.: A CFAR adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst. 28(1), 208–216 (1992) CrossRefGoogle Scholar
  23. 23.
    Rose, A.: Sensitivity performance of the human eye on an absolute scale. J. Opt. Soc. Am. 38, 196–208 (1948) CrossRefGoogle Scholar
  24. 24.
    Ruderman, D.: Origins of scaling in natural images. Vis. Res. 73(3), 814–817 (1996) Google Scholar
  25. 25.
    Swensson, R.G.: Using localization data from image interpretation to improve estimates of performance accuracy. Med. Decis. Mak. 20, 170–185 (2000) CrossRefGoogle Scholar
  26. 26.
    Tilie, S., Laborelli, L., Bloch, I.: A contrario false alarms removal for improving blotch detection in digitized films restoration. In: Proceedings of 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services—IWSSIP, pp. 410–413 (2007) Google Scholar
  27. 27.
    Van Trees, H.L.: Detection, Estimation and Modulation Theory, Part 1. Wiley, New York (1968) Google Scholar
  28. 28.
    Veit, T., Cao, F., Boutemy, P.: An a-contrario decision framework for region-based motion detection. Int. J. Comput. Vis. 68(2), 163–178 (2006) CrossRefGoogle Scholar
  29. 29.
    Xue, F., Liu, Q., Froment, J.: An a-contrario approach for parameters estimation of a motion-blurred image. In: Lecture Notes in Computer Science, vol. 4679, pp. 267–279. Springer, Berlin (2007) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mammography departmentGeneral Electric HealthcareBucFrance
  2. 2.MAP5, CNRS UMR 8145Université Paris DescartesParisFrance

Personalised recommendations