On Straight Line Segment Detection

  • Rafael Grompone von GioiEmail author
  • Jérémie Jakubowicz
  • Jean-Michel Morel
  • Gregory Randall


In this paper we propose a comprehensive method for detecting straight line segments in any digital image, accurately controlling both false positive and false negative detections. Based on Helmholtz principle, the proposed method is parameterless. At the core of the work lies a new way to interpret binary sequences in terms of unions of segments, for which a dynamic programming implementation is given. The proposed algorithm is extensively tested on synthetic and real images and compared with the state of the art.


Straight line segment detection Helmholtz principle A contrario detection Number of false alarms (NFA) 


  1. 1.
    Almansa, A.: Echantillonnage, interpolation et détection. Applications en imagerie satellitaire. Ph.D. thesis, ENS Cachan (2002) Google Scholar
  2. 2.
    Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori information. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 502–507 (2003) CrossRefGoogle Scholar
  3. 3.
    Arias-Castro, E., Donoho, D.L., Huo, X.: Near-optimal detection of geometric objects by fast multiscale methods. IEEE Trans. Inf. Theory 51(7), 2402–2425 (2005) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957) Google Scholar
  5. 5.
    Cao, F., Delon, J., Desolneux, A., Musé, P., Sur, F.: An a contrario approach to hierarchical clustering validity assessment. Preprint CMLA No. 2004-13 (2003) Google Scholar
  6. 6.
    Cao, F., Delon, J., Desolneux, A., Musé, P., Sur, F.: A unified framework for detecting groups and application to shape recognition. J. Math. Imaging Vis. 27(2), 91–119 (2007) zbMATHCrossRefGoogle Scholar
  7. 7.
    Cao, F., Musé, P., Sur, F.: Extracting meaningful curves from images. J. Math. Imaging Vis. 22(2), 159–181 (2005) CrossRefGoogle Scholar
  8. 8.
    Copeland, A.C., Ravichandran, G., Trivedi, M.M.: Radon transform based ship-wake detection. GeoRS 33(1), 35–45 (1995) Google Scholar
  9. 9.
    Deans, S.R.: Hough transform from the radon transform. IEEE Trans. Pattern Anal. Mach. Intell. 3, 185–188 (1981) CrossRefGoogle Scholar
  10. 10.
    Delon, J., Desolneux, A., Lisani, J.-L., Petro, A.-B.: A nonparametric approach for histogram segmentation. IEEE Trans. Image Process. 16(1), 253–261 (2007) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Deriche, R., Faugeras, O.: Tracking line segments. J. Image Vis. Comput. 8(4), 261–270 (1990) CrossRefGoogle Scholar
  12. 12.
    Desolneux, A., Moisan, L., Morel, J.-M.: Maximal meaningful events and applications to image analysis. Technical Report 2000-22, CMLA, ENS-CACHAN (2000). Available at
  13. 13.
    Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. Int. J. Comput. Vis. 40(1), 7–23 (2000) zbMATHCrossRefGoogle Scholar
  14. 14.
    Desolneux, A., Moisan, L., Morel, J.-M.: Edge detection by Helmholtz principle. J. Math. Imaging Vis. 14(3), 271–284 (2001) zbMATHCrossRefGoogle Scholar
  15. 15.
    Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis. Interdisciplinary Applied Mathematics, vol. 35. Springer, New York (2007) Google Scholar
  16. 16.
    Faugeras, O., Deriche, R., Mathieu, H., Ayache, N.J., Randall, G.: The depth and motion analysis machine. PRAI 6, 353–385 (1992) Google Scholar
  17. 17.
    Fernández, F.: Mejoras al detector de alineamientos. Technical Report, InCO, Universidad de la República, Uruguay (2006) Google Scholar
  18. 18.
    Fränti, P., Ageenko, E.I., Kälviäinen, H., Kukkonen, S.: Compression of line drawing images using hough transform for exploiting global dependencies. In: JCIS 1998 (1998) Google Scholar
  19. 19.
    Geman, D., Jedynak, B.: An active testing model for tracking roads in satellite images. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 1–14 (1996) CrossRefGoogle Scholar
  20. 20.
    Giai Checa, B., Bouthemy, P., Vieville, T.: Segment-based detection of moving objects in a sequence of images. In: ICPR94, pp. 379–383 (1994) Google Scholar
  21. 21.
    Grompone von Gioi, R., Jakubowicz, J.: On computational gestalt detection thresholds. J. Physiol.—Paris (2008, to appear).
  22. 22.
    Hough, P.V.C.: Method and means for recognizing complex patterns. U.S. Patent 3,069,654, 18 December 1962 Google Scholar
  23. 23.
    Igual, L.: Image segmentation and compression using the tree of shapes of an image. Motion estimation. Ph.D. Thesis, Universitat Pompeu Fabra (2006) Google Scholar
  24. 24.
    Igual, L., Preciozzi, J., Garrido, L., Almansa, A., Caselles, V., Rougé, B.: Automatic low baseline stereo in urban areas. Inverse Probl. Imaging 1(2), 319–348 (2007) zbMATHMathSciNetGoogle Scholar
  25. 25.
    Illingworth, J., Kittler, J.: A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988) CrossRefGoogle Scholar
  26. 26.
    Ji, C.X., Zhang, Z.P.: Stereo match based on linear feature. In: ICPR88, pp. 875–878 (1988) Google Scholar
  27. 27.
    Kälviäinen, H., Hirvonen, P., Oja, E.: Houghtool—a software package for the use of the Hough transform. Pattern Recognit. Lett. 17, 889–897 (1996) CrossRefGoogle Scholar
  28. 28.
    Kanizsa, G.: Grammatica del Vedere. Il Mulino (1980) Google Scholar
  29. 29.
    Kelvin, L.: On ship waves. Proc. Inst. Mech. Eng. 3 (1887) Google Scholar
  30. 30.
    Lacoste, C., Descombes, X., Zerubia, J., Baghdadi, N.: Bayesian geometric model for line network extraction from satellite images. In: Proceedings (ICASSP ’04). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 3:iii–565–8, vol. 3, 17–21 May 2004 Google Scholar
  31. 31.
    Leavers, V.F.: Survey: Which Hough transform? CVGIP: Image Underst. 58(2), 250–264 (1993) CrossRefGoogle Scholar
  32. 32.
    Lee, Y.-S., Koo, H.-S., Jeong, C.-S.: A straight line detection using principal component analysis. Pattern Recognit. Lett. 27(14), 1744–1754 (2006) CrossRefGoogle Scholar
  33. 33.
    Lindenbaum, M.: An integrated model for evaluating the amount of data required for reliable recognition. IEEE Trans. Patern. Anal. Mach. Intell. 19(11), 1251–1264 (1997) CrossRefGoogle Scholar
  34. 34.
    Lowe, D.: Perceptual Organization and Visual Recognition. Kluwer Academic, Dordrecht (1985) Google Scholar
  35. 35.
    Magli, E., Olmo, G., Lo Presti, L.: On-board selection of relevant images: an application to linear feature recognition. IEEE Trans. Image Process. 10(4), 543–553 (2001) zbMATHCrossRefGoogle Scholar
  36. 36.
    Mahadevan, S., Casasent, D.P.: Detection of triple junction parameters in microscope images. In: SPIE, pp. 204–214 (2001) Google Scholar
  37. 37.
    Matas, J., Galambos, C., Kittler, J.V.: Progressive probabilistic Hough transform. In: BMVC98 (1998) Google Scholar
  38. 38.
    Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int. J. Comput. Vis. 57(3), 201–218 (2004) CrossRefGoogle Scholar
  39. 39.
    Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000) CrossRefGoogle Scholar
  40. 40.
    Musé, P.: On the definition and recognition of planar shapes in digital images. Ph.D. Thesis, ENS Cachan (2004) Google Scholar
  41. 41.
    Musé, P., Sur, F., Cao, F., Gousseau, Y.: Unsupervised thresholds for shape matching. In: IEEE Int. Conf. Image Process., ICIP (2003) Google Scholar
  42. 42.
    Preciozzi, J.: Dense urban elevation models from stereo images by an affine region merging approach. Master’s Thesis, Universidad de la República, Montevideo, Uruguay (2006) Google Scholar
  43. 43.
    Princen, J., Illingworth, J., Kittler, J.V.: Hypothesis testing: a framework for analysing and optimizing Hough transform performance. IEEE Trans. Patern. Anal. Mach. Intell. 16(4), 329–341 (1994) CrossRefGoogle Scholar
  44. 44.
    Rosenfeld, A.: Picture Processing by Computer. Academic Press, New York (1969) zbMATHGoogle Scholar
  45. 45.
    Rosenfeld, A.: Digital straight line segments. TC 23(12), 1264–1269 (1974) zbMATHMathSciNetGoogle Scholar
  46. 46.
    Shaffer, J.P.: Multiple hypothesis testing. Annu. Rev. Psychol. 46, 561–584 (1995) CrossRefGoogle Scholar
  47. 47.
    Shaked, D., Yaron, O., Kiryati, N.: Deriving stopping rules for the probabilistic hough transform by sequential-analysis. Comput. Vis. Image Underst. 63(3), 512–526 (1996) CrossRefGoogle Scholar
  48. 48.
    Stoica, R., Descombes, X., Zerubia, J.: A Gibbs point process for road extraction from remotely sensed images. Int. J. Comput. Vis. 57(2), 121–136 (2004) CrossRefGoogle Scholar
  49. 49.
    Sur, F.: A contrario decision for shape recognition. Ph.D. Thesis, ENS Cachan (2004) Google Scholar
  50. 50.
    Tupin, F., Maître, H., Mangin, J.-F., Nicolas, J.-M., Pechersky, E.: Detection of linear features in SAR images: application to the road network extraction. IEEE Trans. Geosci. Remote Sens. 36(2), 434–453 (1998) CrossRefGoogle Scholar
  51. 51.
    Zheng, Y., Li, H., Doermann, D.: A parallel-line detection algorithm based on HMM decoding. IEEE Trans. PAMI 27(5) (2005) Google Scholar
  52. 52.
    Zhu, Y., Carragher, B., Kriegman, D., Milligan, R., Potter, C.: Automated identification of filaments in cryo-electron microscopy images. J. Struct. Biol. 135, 302–312 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rafael Grompone von Gioi
    • 1
    Email author
  • Jérémie Jakubowicz
    • 1
  • Jean-Michel Morel
    • 1
  • Gregory Randall
    • 2
  1. 1.CMLA, ENS CachanCNRS, UniverSudCachanFrance
  2. 2.IIEUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations