Journal of Mathematical Imaging and Vision

, Volume 32, Issue 3, pp 293–311 | Cite as

Local versus Global in Quasi-Conformal Mapping for Medical Imaging

  • Emil Saucan
  • Eli Appleboim
  • Efrat Barak-Shimron
  • Ronen Lev
  • Yehoshua Y. Zeevi


A method and algorithm of flattening folded surfaces, for two-dimensional representation and analysis of medical images, are presented. The method is based on an application to triangular meshes of classical results of Gehring and Väisälä regarding the existence of quasi-conformal and quasi-isometric mappings.

The proposed algorithm is basically local and, therefore, suitable for extensively folded surfaces encountered in medical imaging. The theory and algorithm guarantee minimal distance, angle and area distortion. Yet, the algorithm is relatively simple, robust and computationally efficient, since it does not require computational derivatives. Both random-starting-point and curvature-based versions of the algorithm are presented.

We demonstrate the algorithm using medical data obtained from real CT images of the colon and MRI scans of the human cortex. Further applications of the algorithm, for image processing in general are also considered. The globality of this algorithm is also studied, via extreme length methods for which we develop a technique of computing straightest geodesics on polyhedral surfaces.


Surface flattening Virtual colonoscopy Computer aided detection Gray-scale images Quasiconformal mapping Maximal dilatation Quasi-isometry Distortion Conformal modulus Quasigeodesic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov, A.D., Reshetnyak, Y.G.: General Theory of Iregular Curves. Mathematics and its Applications, vol. 29. Kluwer Academic, Dordrecht (1989) Google Scholar
  2. 2.
    Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: On area preserving maps of minimal distortion. In: Djaferis, T., Schick, I. (eds.) System Theory: Modeling, Analysis, and Control, pp. 275–287. Kluwer Academic, Dordrecht (1999) Google Scholar
  3. 3.
    Appleboim, E., Saucan, E., Zeevi, Y.: Quasi-Conformal Flat Representation of Triangulated Surfaces for Computerized Tomography, CVAMIA 2006. Lecture Notes in Computer Science, vol. 4241, pp. 155–165. Springer, Berlin (2006) Google Scholar
  4. 4.
    Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003) MATHGoogle Scholar
  5. 5.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: On isometric embedding of facial surfaces into S3. In: Proc. Intl. Conf. on Scale Space and PDE Methods in Computer Vision, pp. 622–631 (2005) Google Scholar
  6. 6.
    Caraman, P.: n-Dimensional Quasiconformal (QCf) Mappings. Abacus Press, Tunbridge Wells (1974). Editura Academiei Române, Bucharest MATHGoogle Scholar
  7. 7.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976) MATHGoogle Scholar
  8. 8.
    Clarenz, U., Litke, N., Rumpf, M.: Axioms and variational problems in surface parameterization. Comput. Aided Geom. Des. 21(8), 727–749 (2004) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gehring, W.F.: Topics in quasiconformal mappings. In: Vuorinen, M. (ed.) Quasiconformal Space Mappings—A Colection of Surveys 1960–1990. Lecture Notes in Mathematics, vol. 1508, pp. 20–38. Springer, Berlin (1991) CrossRefGoogle Scholar
  10. 10.
    Gehring, W.F., Väisälä, J.: The coefficients of quasiconformality. Acta Math. 114, 1–70 (1965) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gu, X., Wang, Y., Yau, S.T.: Computing conformal invariants: period matrices. Commun. Inf. Syst. 2(2), 121–146 (2003) Google Scholar
  12. 12.
    Gu, X., Yau, S.T.: Computing conformal structure of surfaces. Commun. Inf. Syst. 2(2), 121–146 (2002) MATHMathSciNetGoogle Scholar
  13. 13.
    Gu, X., Yau, S.T.: Global conformal surface parameterization. In: Eurographics Symposium on Geometry Processing (2003) Google Scholar
  14. 14.
    Haker, S., Angenet, S., Tannenbaum, A., Kikinis, R.: Non distorting flattening maps and the 3-D visualization of colon CT images. In: IEEE Transauctions on Medical Imaging, vol. 19, No. 7 (2000) Google Scholar
  15. 15.
    Haker, S., Angenet, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parametrization for texture mapping. In: IEEE Transauctions on Visualization and Computer Graphics, vol. 6, No. 2 (2000) Google Scholar
  16. 16.
    Hallinan, P.: A low-dimensional representation of human faces for arbitrary lighting conditions. In: Proc. CVPR, pp. 995–999 (1994) Google Scholar
  17. 17.
    Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea, New York (1952) MATHGoogle Scholar
  18. 18.
    Hurdal, M.K.: Personal communication to ES Google Scholar
  19. 19.
    Hurdal, M.K., Bowers, P.L., Stephenson, K., Sumners, D.W.L., Rehm, K., Schaper, K., Rottenberg, D.A.: Quasi conformally flat mapping the human crebellum. In: Taylor, C., Colchester, A. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI’99, vol. 1679, pp. 279–286. Springer, Berlin (1999) CrossRefGoogle Scholar
  20. 20.
    Hurdal, M.K., Stephenson, K.: Cortical cartography using the discrete conformal approach of circle packings. NeuroImage 23, 119–128 (2004) CrossRefGoogle Scholar
  21. 21.
    Kharevich, L., Springborn, B., Schröder, P.: Discrete conformal mapping via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006) CrossRefGoogle Scholar
  22. 22.
    Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000) MATHCrossRefGoogle Scholar
  23. 23.
    Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990) Google Scholar
  24. 24.
    Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane. Springer, Berlin (1973) MATHGoogle Scholar
  25. 25.
    Pieper, S., Halle, M., Kikinis, R.: 3D Slicer. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, vol. 1, pp. 632–635. IEEE Society (2004) Google Scholar
  26. 26.
    Polthier, K., Schmies, M.: Straight geodesics on polyhedral surfaces. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, pp. 135–150. Springer, Berlin (1998) Google Scholar
  27. 27.
    Pogorelov, A.V.: Quasigeodesic lines on a convex surface. Am. Math. Soc. Transl. 6(72), 430–472 (1952) MathSciNetGoogle Scholar
  28. 28.
    Saucan, E., Appleboim, E., Zeevi, Y.Y.: Image projection and representation on S n. J. Fourier Anal. Appl. 13(6), 711–727 (2007) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Saucan, E., Appleboim, E., Zeevi, Y.Y.: Sampling and reconstruction of surfaces and higher dimensional manifolds. J. Math. Imaging Vis. 30(1), 105–123 (2008) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290, 2323–2326 (2000) CrossRefGoogle Scholar
  31. 31.
    Sheffer, A., de Stuler, E.: Parametrization of faceted surfaces for meshing using angle based flattening. Eng. Comput. 17, 326–337 (2001) MATHCrossRefGoogle Scholar
  32. 32.
    Stephenson, K.: Personal communication to ES Google Scholar
  33. 33.
    Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of Gaussian and mean curvatures estimation methods on triangular meshes. In: Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1021–1026 (2003) Google Scholar
  34. 34.
    Thurston, W.: Three-Dimensional Geometry and Topology, vol. 1. Princeton University Press, Princeton (1997). (S. Levy (ed.)) MATHGoogle Scholar
  35. 35.
    Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des. 24(8–9), 499–518 (2007) CrossRefMathSciNetGoogle Scholar
  36. 36.
  37. 37.
    Zayer, R., Lévy, B., Seide, H.-P.: Linear angle based parameterization. In: Belyaev, A., Garland, M. (eds.) Proceedings of Eurographics Symposium on Image Processing (2007) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Emil Saucan
    • 1
  • Eli Appleboim
    • 2
  • Efrat Barak-Shimron
    • 2
  • Ronen Lev
    • 3
  • Yehoshua Y. Zeevi
    • 2
  1. 1.Electrical Engineering and Mathematics DepartmentsTechnionHaifaIsrael
  2. 2.Department of Electrical EngineeringTechnionHaifaIsrael
  3. 3.Daz 3DDraperUSA

Personalised recommendations