Advertisement

Journal of Mathematical Imaging and Vision

, Volume 32, Issue 2, pp 193–214 | Cite as

Line Geometry and Camera Autocalibration

  • José I. RondaEmail author
  • Antonio Valdés
  • Guillermo Gallego
Article

Abstract

We provide a completely new rigorous matrix formulation of the absolute quadratic complex (AQC), given by the set of lines intersecting the absolute conic. The new results include closed-form expressions for the camera intrinsic parameters in terms of the AQC, an algorithm to obtain the dual absolute quadric from the AQC using straightforward matrix operations, and an equally direct computation of a Euclidean-upgrading homography from the AQC. We also completely characterize the 6×6 matrices acting on lines which are induced by a spatial homography.

Several algorithmic possibilities arising from the AQC are systematically explored and analyzed in terms of efficiency and computational cost. Experiments include 3D reconstruction from real images.

Keywords

Camera autocalibration Varying parameters Absolute quadratic complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agapito, L., Hayman, E., Reid, I.: Self-calibration of rotating and zooming cameras. Int. J. Comput. Vis. 45, 107–127 (2001) zbMATHCrossRefGoogle Scholar
  2. 2.
    Bartoli, A., Sturm, P.: The 3d line motion matrix and alignment of line reconstructions. Int. J. Comput. Vis. 57, 159–178 (2004) CrossRefGoogle Scholar
  3. 3.
    Bayro-Corrochano, E., Banarer, V.: A geometric approach for the theory and applications of 3d projective invariants. J. Math. Imaging Vis. 16(2), 131–154 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berger, M.: Geometry. Springer, Berlin (1987) Google Scholar
  5. 5.
    Bougnoux, S.: From projective to euclidean space under any practical situation, a criticism of self-calibration. In: Proc. International Conference on Computer Vision, Brisbane, Australia, pp. 790–796 (1998) Google Scholar
  6. 6.
    Carlsson, S.: The double algebra: An effective tool for computing invariants in computer vision. In: Proc. of the Second Joint European-US Workshop on Applications of Invariance in Computer Vision, London, UK, 1994, pp. 145–164. Springer, Berlin (1994) Google Scholar
  7. 7.
    Faugeras, O.: What can be seen in three dimensions with an uncalibrated stereo rig. In: Proc. European Conference on Computer Vision, pp. 563–578 (1992) Google Scholar
  8. 8.
    Faugeras, O.: Three Dimensional Computer Vision. MIT Press, Cambridge (1993) Google Scholar
  9. 9.
    Faugeras, O., Luong, Q.-T., Papadopoulou, T.: The Geometry of Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications. MIT Press, Cambridge (2001) zbMATHGoogle Scholar
  10. 10.
    Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall, New York (2002) Google Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003) Google Scholar
  12. 12.
    Hartley, R.I.: Estimation of relative camera positions for uncalibrated cameras. In: Proc. European Conference on Computer Vision, London, UK, 1992, pp. 579–587. Springer, Berlin (1992) Google Scholar
  13. 13.
    Heyden, A.: Geometry and algebra of multiple projective transformations. PhD thesis, Lund University (1995) Google Scholar
  14. 14.
    Heyden, A., Åström, K.: Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, New York, USA (1997) Google Scholar
  15. 15.
    Kahl, F., Triggs, B., Åström, K.: Critical motions for auto-calibration when some intrinsic parameters can vary. J. Math. Imaging Vis. 13(2), 131–146 (2000) zbMATHCrossRefGoogle Scholar
  16. 16.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision. Springer, Berlin (2005) Google Scholar
  17. 17.
    Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8(2), 123–151 (1992) CrossRefGoogle Scholar
  18. 18.
    Pollefeys, M., Gool, L.V.: A stratified approach to metric self-calibration. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 407–412 (1997) Google Scholar
  19. 19.
    Pollefeys, M., Koch, R., van Gool, L.: Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. Int. J. Comput. Vis. 1(32), 7–25 (1999) CrossRefGoogle Scholar
  20. 20.
    Ponce, J.: On computing metric upgrades of projective reconstructions under the rectangular pixel assumption. In: Second European Workshop on 3D Structure from Multiple Images of Large-Scale Environments, London, UK, 2001, pp. 52–67. Springer, Berlin (2001) Google Scholar
  21. 21.
    Ponce, J., McHenry, K., Papadopoulo, T., Teillaud, M., Triggs, B.: On the absolute quadratic complex and its application to autocalibration. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, vol. 1, pp. 780–787 (2005) Google Scholar
  22. 22.
    Pottman, H., Wallner, J.: Computational Line Geometry. Springer, New York (2001) Google Scholar
  23. 23.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1993) Google Scholar
  24. 24.
    Ronda, J.I., Gallego, G., Valdés, A.: Camera autocalibration using Plücker coordinates. In: International Conference on Image Processing, Genoa, Italy, vol. 3, pp. 800–803 (2005) Google Scholar
  25. 25.
    Semple, J.G., Kneebone, G.T.: Algebraic Projective Geometry. Oxford Classic Texts in the Physical Sciences. Clarendon, Oxford (1952) zbMATHGoogle Scholar
  26. 26.
    Seo, Y., Heyden, A.: Auto-calibration from the orthogonality constraints. In: Proc. International Conference on Pattern Recognition, Los Alamitos, CA, USA, vol. 01, pp. 1067–1071 (2000) Google Scholar
  27. 27.
    Seo, Y., Heyden, A., Cipolla, R.: A linear iterative method for auto-calibration using the dac equation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Barcelona, Spain, pp. 880–885 (2001) Google Scholar
  28. 28.
    Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997) zbMATHGoogle Scholar
  29. 29.
    Triggs, B.: Autocalibration and the absolute quadric. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, USA, June 1997, pp. 609–614 (1997) Google Scholar
  30. 30.
    Valdés, A., Ronda, J.: Camera autocalibration and the calibration pencil. J. Math. Imaging Vis. 23(2), 167–174 (2005) CrossRefGoogle Scholar
  31. 31.
    Valdés, A., Ronda, J.I., Gallego, G.: Linear camera autocalibration with varying parameters. In: Proc. International Conference on Image Processing, Singapore, vol. 5, pp. 3395–3398 (2004) Google Scholar
  32. 32.
    Valdés, A., Ronda, J.I., Gallego, G.: The absolute line quadric and camera autocalibration. Int. J. Comput. Vis. 66(3), 283–303 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José I. Ronda
    • 1
    Email author
  • Antonio Valdés
    • 2
  • Guillermo Gallego
    • 1
  1. 1.Grupo de Tratamiento de ImágenesUniversidad Politécnica de MadridMadridSpain
  2. 2.Dep. de Geometría y TopologíaUniversidad Complutense de MadridMadridSpain

Personalised recommendations