Journal of Mathematical Imaging and Vision

, Volume 32, Issue 2, pp 127–137

Stable Algebraic Surfaces for 3D Object Representation



Linear fitting techniques by implicit algebraic models usually suffer from global stability problems. Ridge regression regularization can be used to improve the stability of algebraic surface fits. In this paper a Euclidean Invariant 3D ridge regression matrix is developed and applied to a particular linear algebraic surface fitting method. Utilization of such a regularization in fitting process makes it possible to globally stabilize 3D object fits with surfaces of any degree. Robustness to noise and moderate levels of occlusion has also been enhanced significantly. Experimental results are presented to verify the improvements in global stability and robustness of the resulting fits.


Algebraic surfaces Implicit polynomials Fitting Stability Ridge regression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pilu, M., Fitzgibbon, A., Fisher, R.: Ellipse specific direct least squares fitting. In: Proc. IEEE International Conference on Image Processing, Lausanne, Switzerland, September 1996 Google Scholar
  2. 2.
    Keren, D., Cooper, D., Subrahmonia, J.: Describing complicated objects by implicit polynomials. IEEE Trans. Pattern Anal. Mach. Intell. 16, 38–53 (1994) CrossRefGoogle Scholar
  3. 3.
    Faber, P., Fischer, R.B.: Euclidean fitting revisisted. In: 4th IWVF, pp. 165–175 (2001) Google Scholar
  4. 4.
    Faber, P., Fischer, R.B.: Pros and cons of Euclidean fitting. In: Proc. Annual German Symposium for Pattern Recognition, DAGM01, Munich. LNCS, vol. 2191, pp. 414–420. Springer, Berlin (2001) Google Scholar
  5. 5.
    Keren, D., Gotsman, C.: Fitting curves and surfaces with constrained implicit polynomials. IEEE Trans. Pattern Anal. Mach. Intell. 21(1), 31–41 (1999) CrossRefGoogle Scholar
  6. 6.
    Keren, D.: Topologically faithful fitting of simple closed curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 118–123 (2004) CrossRefGoogle Scholar
  7. 7.
    Redding, N.J.: Implicit polynomials, orthogonal distance regression, and the closest point on a curve. IEEE Trans. Pattern Anal. Mach. Intell. 22(2), 191–199 (2000) CrossRefGoogle Scholar
  8. 8.
    Unel, M., Wolovich, W.A.: On the construction of complete sets of geometric invariants for algebraic curves. Adv. Appl. Math. 24, 65–87 (2000) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Unel, M., Wolovich, W.A.: A new representation for quartic curves and complete sets of geometric invariants. Int. J. Pattern Recognit. Artif. Intell. 13(8), 1137–1149 (1999) CrossRefGoogle Scholar
  10. 10.
    Huang, Z., Cohen, F.S.: Affine-invariant B-spline moments for curve matching. IEEE Trans. Image Process. 5(10), 1473–1480 (1996) CrossRefGoogle Scholar
  11. 11.
    Cohen, F.S., Wang, J.-Y.: Modeling image curve using invariant 3-D object curve models—a path to 3-D recognition and shape estimation from image contours. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 1–12 (1994) CrossRefGoogle Scholar
  12. 12.
    Terzopoulos, D., Metaxas, D.: Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 703–714 (1991) CrossRefGoogle Scholar
  13. 13.
    Wu, M.F., Shen, H.T.: Representation of 3D surfaces by two-variable Forurier descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 583–588 (0000) Google Scholar
  14. 14.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modelling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995) CrossRefGoogle Scholar
  16. 16.
    Dinh, H.Q., Turk, G., Slabaugh, G.: Reconstructing surfaces by volumetric regularization using radial basis functions. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1358–1371 (2002) CrossRefGoogle Scholar
  17. 17.
    Zhang, M., Ma, L., Zeng, X., Wang, Y.H.: Image based 3D face modelling. In: Proceedings of the IEEE International Conference on Computer Graphics, Imaging and Visualization, CGIV04 (2004) Google Scholar
  18. 18.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proceeding of the 6th ACM Symposium on Solid Modelling and Applications, pp. 249–266 (2001) Google Scholar
  19. 19.
    Taubin, G., et al.: Parametrized families of polynomials for bounded algebraic curve and surface fitting. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 287–303 (1994) MATHCrossRefGoogle Scholar
  20. 20.
    Deepak, K., Mundy, J.: Fitting affine invariant conics to curves. In: Geometric Invariance in Machine Vision. MIT Press, Cambridge (1992) Google Scholar
  21. 21.
    Blane, M., Lei, Z., et al.: The 3L algorithm for fitting implicit polynomial curves and surfaces to data. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 298–313 (2000) CrossRefGoogle Scholar
  22. 22.
    Unel, M., Wolovich, W.A.: Pose estimation and object identification using complex algebraic representations. Pattern Anal. Appl. J. 1(3), 178–188 (1998) MATHCrossRefGoogle Scholar
  23. 23.
    Sahin, T., Unel, M.: An adaptive estimation method for rigid motion parameters of 2D curves. In: LNCS, vol. 3212, pp. 355–362. Springer, Heidelberg (2004) Google Scholar
  24. 24.
    Ramesh, J., Kasturi, R., Schunc, B.G.: Machine Vision. McGraw Hill, New York (1995) Google Scholar
  25. 25.
    Tasdizen, T., Tarel, J.-P., Cooper, D.B.: Improving the stability of algebraic curves for applications. IEEE Trans. Image Process. 9(3), 405–416 (2000) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sahin, T., Unel, M.: Fitting globally stabilized algebraic surfaces to range data. In: Proeceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China, October 2005 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer EngineeringGebze Institute of TechnologyGebzeTurkey
  2. 2.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations