Advertisement

Journal of Mathematical Imaging and Vision

, Volume 32, Issue 2, pp 97–125 | Cite as

Partial Partitions, Partial Connections and Connective Segmentation

  • Christian Ronse
Article

Abstract

In connective segmentation (Serra in J. Math. Imaging Vis. 24(1):83–130, [2006]), each image determines subsets of the space on which it is “homogeneous”, in such a way that this family of subsets always constitutes a connection (connectivity class); then the segmentation of the image is the partition of space into its connected components according to that connection.

Several concrete examples of connective segmentations or of connections on sets, indicate that the space covering requirement of the partition should be relaxed. Furthermore, morphological operations on partitions require the consideration of wider framework.

We study thus partial partitions (families of mutually disjoint non-void subsets of the space) and partial connections (where connected components of a set are mutually disjoint but do not necessarily cover the set). We describe some methods for generating partial connections. We investigate the links between the two lattices of partial connections and of partial partitions. We generalize Serra’s characterization of connective segmentation and discuss its relevance. Finally we give some ideas on how the theory of partial connections could lead to improved segmentation algorithms.

Keywords

Mathematical morphology Connective segmentation Connections Partitions Complete lattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society, Providence (1995). 8th printing Google Scholar
  2. 2.
    Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857–944. Springer, Berlin (2007). Chap. 14 CrossRefGoogle Scholar
  3. 3.
    Braga-Neto, U., Goutsias, J.: Connectivity on complete lattices: new results. Comput. Vis. Image Underst. 85(1), 22–53 (2002) zbMATHCrossRefGoogle Scholar
  4. 4.
    Braga-Neto, U., Goutsias, J.: A theoretical tour of connectivity in image processing and analysis. J. Math. Imaging Vis. 19(1), 5–31 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Crespo, J., Schafer, R., Serra, J., Gratin, C., Meyer, F.: The flat zone approach: A general low-level region merging segmentation method. Signal Process. 62(1), 37–60 (1997) zbMATHCrossRefGoogle Scholar
  6. 6.
    Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003) zbMATHGoogle Scholar
  7. 7.
    Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003) Google Scholar
  8. 8.
    Heijmans, H.: Morphological Image Operators. Advances in Electronics and Electron Physics Series. Academic Press, Boston (1994) zbMATHGoogle Scholar
  9. 9.
    Heijmans, H.: Connected morphological operators for binary images. Comput. Vis. Image Underst. 73(1), 99–120 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Matheron, G., Serra, J.: Strong filters and connectivity. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology. II: Theoretical Advances, pp. 141–157. Academic Press, London (1988). Chap. 7 Google Scholar
  11. 11.
    Ore, O.: Theory of equivalence relations. Duke Math. J. 9, 573–627 (1942) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imaging Vis. 8(1), 41–58 (1998) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Ronse, C.: Reconstructing masks from markers in non-distributive lattices. Appl. Algebra Eng. Commun. Comput. 19(1), 51–85 (2008) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ronse, C., Serra, J.: Geodesy and connectivity in lattices. Fundam. Inform. 46(4), 349–395 (2001) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Ronse, C., Serra, J.: Fondements algébriques de la morphologie. In: Najman L., Talbot H. (eds.) Morphologie Mathématique: état de l’art. Hermès (2008, to appear). Chap. 3 Google Scholar
  16. 16.
    Serra, J. (ed.): Image Analysis and Mathematical Morphology, II: Theoretical Advances. Academic Press, London (1988) Google Scholar
  17. 17.
    Serra, J.: Mathematical morphology for Boolean lattices. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology, II: Theoretical Advances, pp. 37–58. Academic Press, London (1988). Chap. 2 Google Scholar
  18. 18.
    Serra, J.: Connectivity on complete lattices. J. Math. Imaging Vis. 9(3), 231–251 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Serra, J.: Connections for sets and functions. Fundam. Inform. 41(1/2), 147–186 (2000) zbMATHMathSciNetGoogle Scholar
  20. 20.
    Serra, J.: Morphological operators for the segmentation of colour images. In: Bilodeau, M., Meyer, F., Schmitt, M. (eds.) Space, Structure and Randomness—Contributions in Honor of Georges Matheron in the Fields of Geostatistics, Random Sets, and Mathematical Morphology. Lecture Notes in Statistics, vol. 183, pp. 223–255. Springer, Berlin (2005) Google Scholar
  21. 21.
    Serra, J.: Morphological segmentations of colour images. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol. 30, pp. 151–176. Springer, Dordrecht (2005) CrossRefGoogle Scholar
  22. 22.
    Serra, J.: Viscous lattices. J. Math. Imaging Vis. 22(2/3), 269–282 (2005) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24(1), 83–130 (2006) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Berlin (2003) zbMATHGoogle Scholar
  25. 25.
    Wilkinson, M.: Attribute-space connectivity and connected filters. Image Vis. Comput. 25(4), 426–435 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.LSIIT UMR 7005 CNRS-ULPParc d’Innovation, Boulevard Sébastien Brant, BP 10413Illkirch CedexFrance

Personalised recommendations