Advertisement

Journal of Mathematical Imaging and Vision

, Volume 32, Issue 1, pp 89–96 | Cite as

An Approximate Distribution for the Normalized Cut

  • Saralees NadarajahEmail author
Article

Abstract

The normalized cut is a popular graph partitioning measure for perceptual organization. Here, some approximate but explicit expressions are derived for the probability density function, cumulative distribution function and the moments of the normalized cut. A simple procedure is provided for computing the associated percentile points and hence the associated confidence intervals. Finally, an application is illustrated.

Keywords

Beta distribution Graph partitioning Normalized cut Sum of two random variables 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shi, J.B., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000) CrossRefGoogle Scholar
  2. 2.
    Ziyan, U., Tuch, D., Westin, C.R.: Segmentation of thalamic nuclei from DTI using spectral clustering. Lect. Notes Comput. Sci. 4191, 807–814 (2006) CrossRefGoogle Scholar
  3. 3.
    Cai, W.C., Chung, A.C.S.: Multi-resolution vessel segmentation using normalized cuts in retinal images. Lect. Notes Comput. Sci. 4191, 928–936 (2006) CrossRefGoogle Scholar
  4. 4.
    Falcao, A.X., Miranda, P.A.V., Rocha, A.: A linear-time approach for image segmentation using graph-cut measures. Lect. Notes Comput. Sci. 4179, 138–149 (2006) CrossRefGoogle Scholar
  5. 5.
    Duarte, A., Sanchez, A., Fernandez, F., et al.: Improving image segmentation quality through effective region merging using a hierarchical social metaheuristic. Pattern Recogn. Lett. 27, 1239–1251 (2006) CrossRefGoogle Scholar
  6. 6.
    Li, H.Y., Chen, W.B., Shen, I.F.: Segmentation of discrete vector fields. IEEE Trans. Vis. Comput. Graph. 12, 289–300 (2006) CrossRefGoogle Scholar
  7. 7.
    Archip, N., Rohling, R., Cooperberg, P., et al.: Ultrasound image segmentation using spectral clustering. Ultrasound Med. Biol. 31, 1485–1497 (2005) CrossRefGoogle Scholar
  8. 8.
    Rital, S., Cherifi, H., Miguet, S.: Weighted adaptive neighborhood hypergraph partitioning for image segmentation. Lect. Notes Comput. Sci. 3687, 522–531 (2005) CrossRefGoogle Scholar
  9. 9.
    Peng, Y.X., Ngo, C.W.: Hot event detection and summarization by graph modeling and matching. Lect. Notes Comput. Sci. 3568, 257–266 (2005) CrossRefGoogle Scholar
  10. 10.
    Shen, X.L., Meyer, F.G.: Analysis of event-related fMRI data using diffusion maps. Lect. Notes Comput. Sci. 3565, 652–663 (2005) Google Scholar
  11. 11.
    Wang, C., Wang, W.Y.: Using term clustering and supervised term affinity construction to boost text classification. Lect. Notes Comput. Sci. 3518, 813–819 (2005) Google Scholar
  12. 12.
    Duarte, A., Sanchez, A., Fernandez, F., et al.: Region merging for severe oversegmented images using a hierarchical social metaheuristic. Lect. Notes Comput. Sci. 3449, 345–355 (2005) Google Scholar
  13. 13.
    Tao, W.B., Jin, H., Tian, J.W., et al.: Real-time segmentation technology of man-made infrared object based on normalized cuts. Int. J. Infrared Millim. Waves 24, 114–118 (2005) Google Scholar
  14. 14.
    Ngo, C.W., Ma, Y.F., Zhang, H.J.: Video summarization and scene detection by graph modeling. IEEE Trans. Circuits Syst. Video Technol. 15, 296–305 (2005) CrossRefGoogle Scholar
  15. 15.
    Brun, A., Knutsson, H., Park, H.J., et al.: Clustering fiber traces using normalized cuts. Lect. Notes Comput. Sci. 3216, 368–375 (2004) Google Scholar
  16. 16.
    Du, Y., Chen, D.Z., Wu, X.D.: Approximation algorithms for multicommodity flow and normalized cut problems: Implementations and experimental study. Lect. Notes Comput. Sci. 3106, 112–121 (2004) MathSciNetGoogle Scholar
  17. 17.
    Wu, X.D., Chen, D.Z., Mason, J.J., et al.: Efficient approximation algorithms for pairwise data clustering and applications. Int. J. Comput. Geom. Appl. 14, 85–104 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Duarte, A., Sanchez, A., Fernandez, F., et al.: Top-down evolutionary image segmentation using a hierarchical social metaheuristic. Lect. Notes Comput. Sci. 3005, 301–311 (2004) Google Scholar
  19. 19.
    Kawaji, H., Takenaka, Y., Matsuda, H.: Graph-based clustering for finding distant relationships in a large set of protein sequences. Bioinformatics 20, 243–252 (2004) CrossRefGoogle Scholar
  20. 20.
    De Freitas, J.M.: Noise attenuation properties of non-recursive FIR filters. Meas. Sci. Technol. 14, 1701–1713 (2003) CrossRefGoogle Scholar
  21. 21.
    Wu, X.D., Chen, D.Z., Mason, J.J., et al.: Pairwise data clustering and applications. Lect. Notes Comput. Sci. 2697, 455–466 (2003) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Soundararajan, P., Sarkar, S.: An in-depth study of graph partitioning measures for perceptual organization. IEEE Trans. Pattern Anal. Mach. Intell. 25, 642–660 (2003) CrossRefGoogle Scholar
  23. 23.
    Belongie, S., Fowlkes, C., Chung, F., et al.: Spectral partitioning with indefinite kernels using the Nystrom extension. Lect. Notes Comput. Sci. 2352, 531–542 (2002) CrossRefGoogle Scholar
  24. 24.
    He, X., Zha, H.Y., Ding, C.H.Q., et al.: Web document clustering using hyperlink structures. Comput. Stat. Data Anal. 41, 19–45 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Malik, J., Belongie, S., Leung, T., et al.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43, 7–27 (2001) zbMATHCrossRefGoogle Scholar
  26. 26.
    Malik, J., Shi, J.B., Belongie, S., et al.: Grouping in the normalized cut framework. Lect. Notes Comput. Sci. 1681, 155–164 (1999) CrossRefGoogle Scholar
  27. 27.
    Cox, D.R., Hinkley, D.V.: Theoretical Statistics. Chapman and Hall, London (1974) zbMATHGoogle Scholar
  28. 28.
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 1. Gordon and Breach, New York (1986) Google Scholar
  29. 29.
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 3. Gordon and Breach, New York (1986) Google Scholar
  30. 30.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000) zbMATHGoogle Scholar
  31. 31.
    Pham-Gia, T., Turkkan, N.: Distribution of the linear combination of two general beta variables and applications. Commun. Stat. Theory Methods 27, 1851–1869 (1998) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK

Personalised recommendations