Symmetries of 1-D Images

  • Lewis D. Griffin


The possible automorphism groups of scalar functions of a one-dimensional Euclidean domain are presented. The groups are determined relative to a class of transformations that allow an isometry of the function domain, simultaneous with a separate isometry of the function co-domain. Ten non-trivial automorphism groups are found. Seven of these are related to five of the seven Frieze groups.


Image structure Group theory Visual perception Image features 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosen, J.: Resource letter SP-2: Symmetry and group theory in physics. Am. J. Phys. 49(4), 304–319 (1981) CrossRefGoogle Scholar
  2. 2.
    Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, Cambridge (2002) zbMATHGoogle Scholar
  3. 3.
    Hahn, T. (ed.): Space-Group Symmetry. International Tables for Crystallography, vol. A. International Union of Crystallography, Chester (2006) Google Scholar
  4. 4.
    Jones, O.: The Grammar of Ornament. Day, London (1856) Google Scholar
  5. 5.
    Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Raume I. Math. Ann. 70, 297–336 (1911) CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Conway, J.H., et al.: On three-dimensional space groups. Contrib. Algebra Geom. 42(2), 475–507 (2001) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Grünbaum, B., Shephard, G.C.: Tilings and Patterns. Freeman, New York (1987) zbMATHGoogle Scholar
  8. 8.
    Schattschneider, D.: MC Escher. Visions of Symmetry. Plenum Press, New York (1990) Google Scholar
  9. 9.
    Holser, W.T.: Classification of symmetry groups. Acta Crystallograph. 14, 1236–1242 (1961) CrossRefGoogle Scholar
  10. 10.
    Loeb, A.A.: Color and Symmetry. Krieger, Melbourne (1978) Google Scholar
  11. 11.
    Koenderink, J.J., van Doorn, A.J.: Image processing done right. In: ECCV 2002, Copenhagen. Springer, Berlin (2002) Google Scholar
  12. 12.
    Alexander, D.C., et al.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20(11), 1131–1139 (2001) CrossRefGoogle Scholar
  13. 13.
    Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405–421 (2007) CrossRefGoogle Scholar
  14. 14.
    Liu, Y.X., Collins, R.T., Tsin, Y.H.: A computational model for periodic pattern perception based on frieze and wallpaper groups. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 354–371 (2004) CrossRefGoogle Scholar
  15. 15.
    Baylis, G.C., Driver, J.: Perception of symmetry and repetition within and across visual shapes: Part-descriptions and object-based attention. Vis. Cognit. 8(2), 163–196 (2001) CrossRefGoogle Scholar
  16. 16.
    Dakin, S.C., Watt, R.J.: Detection of bilateral symmetry using spatial filters. Spat. Vis. 8(4), 393–413 (1994) CrossRefGoogle Scholar
  17. 17.
    Levi, D.M., Saarinen, J.: Perception of mirror symmetry in amblyopic vision. Vis. Res. 44(21), 2475–2482 (2004) CrossRefGoogle Scholar
  18. 18.
    Mancini, S., Sally, S.L., Gurnsey, R.: Detection of symmetry and anti-symmetry. Vis. Res. 45(16), 2145–2160 (2005) CrossRefGoogle Scholar
  19. 19.
    Oka, S., et al.: VEPs elicited by local correlations and global symmetry: Characteristics and interactions. Vis. Res. 47(16), 2212–2222 (2007) CrossRefGoogle Scholar
  20. 20.
    Rainville, S.J.M., Kingdom, F.A.A.: The functional role of oriented spatial filters in the perception of mirror symmetry—psychophysics and modeling. Vis. Res. 40(19), 2621–2644 (2000) CrossRefGoogle Scholar
  21. 21.
    Sally, S., Gurnsey, R.: Symmetry detection across the visual field. Spat. Vis. 14(2), 217–234 (2001) CrossRefGoogle Scholar
  22. 22.
    Scognamillo, R., et al.: A feature-based model of symmetry detection. Proc. R. Soc. Lond. Ser. B—Biol. Sci. 270(1525), 1727–1733 (2003) CrossRefGoogle Scholar
  23. 23.
    Wilson, H.R., Wilkinson, F.: Symmetry perception: a novel approach for biological shapes. Vis. Res. 42(5), 589–597 (2002) CrossRefGoogle Scholar
  24. 24.
    Griffin, L.D.: The 2nd order local-image-structure solid. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1355–1366 (2007) CrossRefGoogle Scholar
  25. 25.
    Griffin, L.D., Lillholm, M.: Hypotheses for image features, icons and textons. Int. J. Comput. Vis. 71(3), 213–230 (2006) CrossRefGoogle Scholar
  26. 26.
    Yale, P.B.: Geometry and Symmetry. Dover Press, New York (1968) zbMATHGoogle Scholar
  27. 27.
    Armstrong, M.A.: Groups and Symmetry. Springer, Berlin (1988) zbMATHGoogle Scholar
  28. 28.
    Glassner, A.: Frieze groups. IEEE Comput. Graph. Appl. 16(3), 78–83 (1996) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Computer ScienceUniversity College LondonLondonUK

Personalised recommendations