Advertisement

Estimation of Vector Fields in Unconstrained and Inequality Constrained Variational Problems for Segmentation and Registration

  • Gozde Unal
  • Greg Slabaugh
Article

Abstract

Vector fields arise in many problems of computer vision, particularly in non-rigid registration. In this paper, we develop coupled partial differential equations (PDEs) to estimate vector fields that define the deformation between objects, and the contour or surface that defines the segmentation of the objects as well. We also explore the utility of inequality constraints applied to variational problems in vision such as estimation of deformation fields in non-rigid registration and tracking. To solve inequality constrained vector field estimation problems, we apply tools from the Kuhn-Tucker theorem in optimization theory. Our technique differs from recently popular joint segmentation and registration algorithms, particularly in its coupled set of PDEs derived from the same set of energy terms for registration and segmentation. We present both the theory and results that demonstrate our approach.

Keywords

Variational problems Equality constraints Inequality constraints Kuhn-Tucker theorem Vector fields Nonrigid registration Joint registration and segmentation Tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R., Marsden, J., Ratiu, T.: Manifolds, Tensor Analysis and Applications. Springer, New York (1988) zbMATHGoogle Scholar
  2. 2.
    Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. Int. J. Comput. Vis. 39(1), 41–56 (2000) zbMATHCrossRefGoogle Scholar
  3. 3.
    Amit, Y.: A nonlinear variational problem for image matching. SIAM J. Sci. Comput. 15(1), 207–224 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aubert, G., Deriche, R., Konrprobst, P.: Computing optical flow via variational techniques. SIAM J. Appl. Math. 60(1), 156–182 (1999) zbMATHCrossRefGoogle Scholar
  5. 5.
    Bertalmio, M., Caselles, V., Rouge, B., Sole, A.: Tv based image restoration with local constraints. J. Sci. Comput. 19(1–3), 95–122 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bliss, G.A.: Calculus of Variations. Carus Mathematical Monographs. MAA, Chicago (1925) zbMATHGoogle Scholar
  7. 7.
    Chan, T., Vese, L.: An active contour model without edges. In: Int. Conf. Scale-Space Theories in Computer Vision, pp. 141–151 (1999) Google Scholar
  8. 8.
    Chefd’hotel, C., Hermosillo, G., Faugeras, O.: A variational approach to multi-modal image matching. In: VLSM Workshop-ICCV, pp. 21–28 (2001) Google Scholar
  9. 9.
    Chefd’Hotel, C., Tschumperle, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20, 147–162 (2004) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K., Briggs, R., Geiser, E.: Using prior shapes in geometric active contours in a variational framework. Int. J. Comput. Vis. 50(3), 315–328 (2002) zbMATHCrossRefGoogle Scholar
  11. 11.
    Cherkaev, A., Cherkaev, E.: Calculus of variations and applications. Lecture Notes, University of Utah, Salt Lake City, UT (2003) Google Scholar
  12. 12.
    Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996) CrossRefGoogle Scholar
  13. 13.
    Cremers, D., Soatto, S.: Variational space-time motion segmentation. In: Proc. Int. Conf. on Computer Vision, pp. 886–982 (2003) Google Scholar
  14. 14.
    Desbrun, M., Hirani, A., Marsden, J.: Discrete exterior calculus for variational problems in computer vision and graphics. In: CDC Conference (2003) Google Scholar
  15. 15.
    Dydenko, I., Friboulet, D., Magnin, I.: A variational framework for affine registration and segmentation with shape prior: application in echocardiographic imaging. In: VLSM-ICCV, pp. 201–208 (2003) Google Scholar
  16. 16.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (1963) Google Scholar
  17. 17.
    Gregory, J., Lin, C.: Constrained Optimization in the Calculus of Variations and Optimal Control Theory. Chapman and Hall, New York (1992) zbMATHGoogle Scholar
  18. 18.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981) CrossRefGoogle Scholar
  19. 19.
    Keeling, S., Ring, W.: Medical image registration and interpolation by optical flow with maximal rigidity. J. Math. Imaging Vis. 23(1), 47–65 (2005) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Lantéri, H., Roche, M., Aime, C.: Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms. Inverse Probl. 18, 1397–1419 (2002) zbMATHCrossRefGoogle Scholar
  21. 21.
    Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969) zbMATHGoogle Scholar
  22. 22.
    Lundervold, A., Taxt, T., Duta, N., Jain, A.: Model-guided segmentation of corpus callosum in mr images. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1231–1236 (1999) Google Scholar
  23. 23.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, London (2004) zbMATHGoogle Scholar
  24. 24.
    Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Fransisco, pp. 22–26 (1985) Google Scholar
  25. 25.
    Nagy, J., Strakos, Z.: Enforcing nonnegativity in image reconstruction algorithms. In: D.C.W. et al., (eds.) Mathematical Modeling, Estimation, and Imaging, vol. 4121, pp. 182–190 (2000) Google Scholar
  26. 26.
    Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation. J. Comput. Phys. 49, 12–49 (1988) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Paragios, N., Deriche, R.: Geodesic active regions for motion estimation and tracking. In: Proc. Int. Conf. on Computer Vision, pp. 224–240 (1999) Google Scholar
  28. 28.
    Paragios, N., Rousson, M., Ramesh, M.: Knowledge-based registration and segmentation of the left ventricle: A level set approach. In: IEEE Workshop on App. Comp. Vision, pp. 37–42 (2002) Google Scholar
  29. 29.
    Paragios, N., Rousson, M., Ramesh, V.: Non-rigid registration using distance functions. Comput. Vis. Image Underst. 89, 142–165 (2003) zbMATHCrossRefGoogle Scholar
  30. 30.
    Polthier, K., Preuss, E.: Variational approach to vector field decomposition. In: Eurographics Workshop on Visualization, Springer (2000) Google Scholar
  31. 31.
    Ray, K., Majumder, D.: A critical appreciation on algebraic image restoration. IEEE Trans. Syst. Man Cybern. 18(3), 477–481 (1988) CrossRefGoogle Scholar
  32. 32.
    Richard, F., Cohen, L.: A new image registration technique with free boundary constraints: Application to mammography. In: Proc. European Conf. Computer Vision, pp. 531–545 (2002) Google Scholar
  33. 33.
    Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  34. 34.
    Simard, P., Mailloux, G.: A projection operator for the restoration of divergence-free vector fields. IEEE Trans. Pattern Anal. Mach. Intell. 10(2), 248–256 (1988) CrossRefGoogle Scholar
  35. 35.
    Tong, Y., Lombeyda, S., Hirani, A., Desbrun, M.: Discrete multiscale vector field decomposition. In: Proc. ACM SIGGRAPH (2003) Google Scholar
  36. 36.
    Unal, G., Slabaugh, G.: Coupled pdes for non-rigid registration and segmentation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 168–175 (2005) Google Scholar
  37. 37.
    Vemuri, B., Chen, Y.: Joint image registration and segmentation. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision and Graphics, pp. 251–269. Springer, New York (2003) CrossRefGoogle Scholar
  38. 38.
    Wang, F., Vemuri, B.: Simultaneous registration and segmentation of anatomical structures from brain mri. In: MICCAI, LNCS, vol. 3749, pp. 17–25, October 2005 Google Scholar
  39. 39.
    Wong, A., Liu, H., Shi, P.: Segmentation of myocardium using velocity field constrained front propagation. In: IEEE Workshop Applications of Computer Vision, p. 84 (2002) Google Scholar
  40. 40.
    Wyatt, P., Noble, J.: Map mrf joint segmentation & registration. In: MICCAI, pp. 580–587 (2002) Google Scholar
  41. 41.
    Yezzi, A., Zollei, L., Kapur, T.: A variational framework for joint segmentation and registration. In: CVPR-MMBIA, pp. 44–49 (2001) Google Scholar
  42. 42.
    Yezzi, A., Zollei, L., Kapur, T.: A variational framework for integrating segmentation and registration through active contours. Med. Image Anal. 7(2), 171–185 (2003) CrossRefGoogle Scholar
  43. 43.
    Zhang, T., Freedman, D.: Tracking objects using density matching and shape priors. In: Proc. Int. Conf. on Computer Vision, pp. 1056–1062 (2003) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityTuzlaTurkey
  2. 2.Intelligent Vision and ReasoningSiemens Corporate ResearchPrincetonUSA

Personalised recommendations