Journal of Mathematical Imaging and Vision

, Volume 30, Issue 2, pp 147–165 | Cite as

Motion Analysis with the Radon Transform on Log-Polar Images

  • V. Javier Traver
  • Filiberto Pla


Image projections provide an effective way of describing image contents or estimate particular kinds of motion. However, most (if not all) of previous literature on projections has been done on Cartesian images. In contrast, the work described in this paper is aimed at exploring how projections can be defined on log-polar images and how they perform in estimating motion. In the proposed algorithm, a set of projection signals is computed in two consecutive frames. Then, 1D affine motion between each pair of corresponding projection signals is estimated. Finally, 2D image affine motion is derived from the set of estimated 1D motion parameters, using a 2D-1D motion mapping model (MMM). A reduced, 5-parameter, affine motion model can be estimated with this MMM. The algorithm is implemented in both, log-polar and Cartesian images. Synthetic motion is used for a careful analysis of the strengths and weaknesses of the algorithm. The comparison of the results with log-polar and Cartesian images reveal that the limitations of the approach are due to the MMM, rather than to the inherent difficulties and distortions introduced by the space-variant nature of log-polar images. Another significant finding is that Cartesian images require much more pixels than log-polar images to get comparable estimation performance.


Motion analysis Radon transform Log-polar images Parametric motion Affine motion model Projections 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrns, I., Neumann, H.: A view-based approach for real-time fixation using log-polar mapping. In: Freksa, C. (ed.) Proc. in Artificial Intelligence, pp. 89–96, June 1998 Google Scholar
  2. 2.
    Barnes, N., Sandini, G.: Direction control for an active docking behavior based on the rotational component of log-polar optic flow. In: Tsai, W.-H., Lee, H.-J. (eds.) European Conf. on Computer Vision, vol. 2, pp. 167–181. Dublin, Ireland, June 2000 Google Scholar
  3. 3.
    Bazin, P.-L., Vézien, J.-M.: Integration of geometric elements, euclidean relations, and motion curves for parametric shape and motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 27(12), 1960–1976 (2005) CrossRefGoogle Scholar
  4. 4.
    Bernardino, A., Santos-Victor, J.: Visual behaviors for binocular tracking. Robot. Auton. Syst. 25, 137–146 (1998) CrossRefGoogle Scholar
  5. 5.
    Bernardino, A., Santos-Victor, J., Sandini, G.: Foveated active tracking with redundant 2D motion parameters. Robot. Auton. Syst. 39(3–4), 205–221 (2002) CrossRefGoogle Scholar
  6. 6.
    Bolduc, M., Levine, M.D.: A review of biologically motivated space-variant data reduction models for robotic vision. Comput. Vis. Image Underst. (CVIU) 69(2), 170–184 (1998) CrossRefGoogle Scholar
  7. 7.
    Capurro, C., Panerai, F., Sandini, G.: Dynamic vergence using log-polar images. Int. J. Comput. Vis. 24(1), 79–94 (1997) CrossRefGoogle Scholar
  8. 8.
    Daniilidis, K., Krüger, V.: Optical flow computation in the log-polar plane. In: Hlaváč, V., Šára, R. (eds.) Int. Conf. on Computer Analysis of Images and Patterns (CAIP), pp. 65–72. Springer, Berlin (1995) Google Scholar
  9. 9.
    Dias, J., Araujo, H., Paredes, C., Batista, J.: Optical normal flow estimation on log-polar images. A solution for real-time binocular vision. Real-Time Imaging 3(3), 213–228 (1997) CrossRefGoogle Scholar
  10. 10.
    Fermüller, C., Aloimonos, Y.: Qualitative egomotion. Int. J. Comput. Vis. 15, 7–29 (1995) CrossRefGoogle Scholar
  11. 11.
    Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 20(10), 1025–1039 (1998) CrossRefGoogle Scholar
  12. 12.
    Harris, J., Stocker, H.: Handbook of Mathematics and Computation Science. Springer, New York (1998) Google Scholar
  13. 13.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) zbMATHGoogle Scholar
  14. 14.
    Huang, Y., Palaniappan, K., Zhuang, X., Cavanaugh, J.E.: Optic flow field segmentation and motion estimation using a robust genetic partitioning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 17(12), 1177–1190 (1995) CrossRefGoogle Scholar
  15. 15.
    Kadyrov, A., Petrou, M.: Affine parameter estimation from the Trace transform. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 28(10), 1631–1645 (2006) CrossRefGoogle Scholar
  16. 16.
    Kang, S., Lee, S.-W.: Real-time tracking of multiple objects in space-variant vision based on magnocellular visual pathway. Pattern Recognit. 35(10), 2031–2040 (2002) zbMATHCrossRefGoogle Scholar
  17. 17.
    Kim, Y.-H., Martínez, A.M., Kak, A.C.: Robust motion estimation under varying illumination. Image Vis. Comput. (IVC) 23(4), 365–375 (2005) CrossRefGoogle Scholar
  18. 18.
    Krüger, V.: Optical flow estimation in the complex logarithmic plane. Master’s thesis, University of Kiel, Germany (1995) Google Scholar
  19. 19.
    Manzotti, R., Gasteratos, A., Metta, G., Sandini, G.: Disparity estimation on log-polar images and vergence control. Comput. Vis. Image Underst. (CVIU) 83, 97–117 (2001) zbMATHCrossRefGoogle Scholar
  20. 20.
    Milanfar, P.: A model of the effect of image motion in the Radon transform domain. IEEE Trans. Image Process. 8(9), 1276–1281 (1999) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Montoliu, R., Pla, F.: Accurate image registration by combinig feature-based matching and GLS-based motion estimation. In: International Conference on Computer Vision Theory and Applications, pp. 386–389, March 2007 Google Scholar
  22. 22.
    Okajima, N., Nitta, H., Mitsuhashi, W.: Motion estimation and target tracking in the log-polar geometry. In: 17th Sensor Symposium. Kawasaki, Japan, May 2000 Google Scholar
  23. 23.
    Oshiro, N., Maru, N., Nishikawa, A., Miyazaki, F.: Binocular tracking using log polar mapping. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 791–798. Osaka, Japan, November 1996 Google Scholar
  24. 24.
    Robinson, D., Milanfar, P.: Efficiency and accuracy tradeoffs in using projections for motion estimation. In: 35th Asilomar Conference on Signals, Systems, and Computers, pp. 545–550, November 2001 Google Scholar
  25. 25.
    Robinson, D., Milanfar, P.: Fast local and global projection-based methods for affine motion estimation. J. Math. Imaging Vis. 18(1), 35–54 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sandini, G., Metta, G.: Retina-like sensors: motivations, technology and applications. In: Barth, F.G., Humphrey, J.A., Secomb, T.W. (eds.) Sensors and Sensing in Biology and Engineering. Springer, New York (2003) Google Scholar
  27. 27.
    Schwartz, E.L.: Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biol. Cybern. 25, 181–194 (1977) CrossRefGoogle Scholar
  28. 28.
    Shin, C.W., Inokuchi, S., Kim, K.I.: Retina-like visual sensor for fast tracking and navigation robots. Mach. Vis. Appl. 10, 1–8 (1997) CrossRefGoogle Scholar
  29. 29.
    Silva, C., Santos-Victor, J.: Egomotion estimation using log-polar images. In: Int. Conf. on Computer Vision. Bombay, India, January 1998 Google Scholar
  30. 30.
    Stiller, C., Konrad, J.: Estimating motion in image sequences: A tutorial on modeling and computation of 2D motion. IEEE Signal Process. Mag. 16(4), 70–91 (1999) CrossRefGoogle Scholar
  31. 31.
    Swain, M., Stricker, M.: Promising directions in active vision. Int. J. Comput. Vis. 11(2), 109–126 (1993) CrossRefGoogle Scholar
  32. 32.
    Tistarelli, M., Sandini, G.: On the advantages of polar and log-polar mapping for direct estimation of time-to-impact from optical flow. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 15, 401–410 (1993) CrossRefGoogle Scholar
  33. 33.
    Traver, V.J., Pla, F.: Motion estimation and figure-ground segmentation in log-polar images. In: Int. Conf. on Pattern Recognition (ICPR), pp. 166–169. Québec, Canada, August 2002 Google Scholar
  34. 34.
    Traver, V.J., Pla, F.: Radon-like transforms in log-polar images for affine motion estimation. In: Portuguese Conf. on Pattern Recognition. Aveiro, Portugal, June 2002 Google Scholar
  35. 35.
    Tunley, H., Young, D.: First order optic flow from log-polar sampled images. In: Eklundh, J.-O. (ed.) European Conf. on Computer Vision. LNCS, vol. 800, pp. 132–137. Springer, New York (1994) Google Scholar
  36. 36.
    Venkatachalapathy, K., Krishnamoorthy, R., Viswanath, K.: A new adaptive search strategy for fast block based motion estimation algorithms. J. Vis. Commun. Image Represent. 15(2), 203–213 (2004) CrossRefGoogle Scholar
  37. 37.
    Wilson, J.C., Hodgson, R.M.: Log-polar mapping applied to pattern representation and recognition. In: Computer Vision and Image Processing, pp. 245–277. Academic Press, New York (1992) Google Scholar
  38. 38.
    Yeasin, M.: Optical flow in log-mapped image plane: A new approach. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 24(1), 125–131 (2002) CrossRefGoogle Scholar
  39. 39.
    Zokai, S., Wolberg, G.: Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations. IEEE Trans. Image Process. 14(10), 1422–1434 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dep. Llenguatges i Sistemes InformàticsUniversitat Jaume ICastellóSpain

Personalised recommendations