Journal of Mathematical Imaging and Vision

, Volume 30, Issue 2, pp 133–146 | Cite as

Nonlocal Prior Bayesian Tomographic Reconstruction

  • Yang Chen
  • Jianhua Ma
  • Qianjin Feng
  • Limin Luo
  • Pengcheng Shi
  • Wufan ChenEmail author


Bayesian approaches, or maximum a posteriori (MAP) methods, are effective in providing solutions to ill-posed problems in image reconstruction. Based on Bayesian theory, prior information of the target image is imposed on image reconstruction to suppress noise. Conventionally, the information in most of prior models comes from weighted differences between pixel intensities within a small local neighborhood. In this paper, we propose a novel nonlocal prior such that differences are computed over a broader neighborhoods of each pixel with weights depending on its similarity with respect to the other pixels. In such a way connectivity and continuity of the image is exploited. A two-step reconstruction algorithm using the nonlocal prior is developed. The proposed nonlocal prior Bayesian reconstruction algorithm has been applied to emission tomographic reconstructions using both computer simulated data and patient SPECT data. Compared to several existing reconstruction methods, our approach shows better performance in both lowering the noise and preserving the edges.


Bayesian reconstruction Positron emission tomography (PET) Single photon emission computed tomography (SPECT) Local prior Nonlocal prior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertero, M., De Mol, C., Pike, E.R.: Linear inverse problems with discrete data, I: general formulation and singular system analysis. Inverse Prob. 1(4), 301–330 (1985) zbMATHCrossRefGoogle Scholar
  2. 2.
    Bertero, M., Poggio, T., Torre, V.: Ill posed problems in early vision. Proc. IEEE 76, 869–889 (1988) CrossRefGoogle Scholar
  3. 3.
    Shepp, L.A., Vardi, Y.: Maximum likehood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113–121 (1982) Google Scholar
  4. 4.
    Lange, K.: Convergence of EM image reconstruction algorithms with Gibbs smoothness. IEEE Trans. Med. Imaging 9, 439–446 (1990) CrossRefGoogle Scholar
  5. 5.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984) zbMATHCrossRefGoogle Scholar
  6. 6.
    Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, Tokyo (2001) zbMATHGoogle Scholar
  7. 7.
    Black, M.J.: Rangarajan A., Unification of line process, outlier rejection, and robust statistics with application in early vision. Int. J. Comput. Vis. 19, 57–91 (1996) CrossRefGoogle Scholar
  8. 8.
    Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge preserving regularization in computer imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997) CrossRefGoogle Scholar
  9. 9.
    Johnson, V., Wong, W.H., Hu, X., Chen, C.T.: Image restoration using Gibbs prior: boundary modeling, treatment of blurring, and selection of hyperparameter. IEEE Trans. Pattern Anal. Mach. Intell. 13, 413–425 (1991) CrossRefGoogle Scholar
  10. 10.
    Bouman, C.A., Sauer, K.: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Process. 2, 296–310 (1993) CrossRefGoogle Scholar
  11. 11.
    Gindi, G., Rangarajan, A., Lee, M., Hong, P.J., Zubal, G.: Bayesian reconstruction for emission tomography via deterministic annealing. In: Barrett, H., Gmitro, A. (eds.) Information Processing in Medical Imaging, pp. 322–338. Springer, Berlin (1993) CrossRefGoogle Scholar
  12. 12.
    Lee, S.J., Rangarajan, A., Gindi, G.: Bayesian image reconstruction in SPECT using higher order mechanical models as priors. IEEE Trans. Med. Imaging 14(4), 669–680 (1995) CrossRefGoogle Scholar
  13. 13.
    Yu, D.F., Fessler, J.A.: Edge-preserving tomographic reconstruction with nonlocal regularization. IEEE Trans. Med. Imaging 21(2), 159–173 (2002) CrossRefGoogle Scholar
  14. 14.
    Johnson, V.E.: A model for segmentation and analysis of noisy images. J. Am. Stat. Assoc. 89(425), 230–241 (1994) CrossRefGoogle Scholar
  15. 15.
    Bowsher, J.E., Johnson, V.E., Turkington, T.G., Jaszczak, R.J., Floyd, C.E., Coleman, R.E.: Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Trans. Med. Imaging 15(5), 673–686 (1996) CrossRefGoogle Scholar
  16. 16.
    Buades, A., Coll, B., Morel, J.M.: A nonlocal algorithm for image denoising. In: Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, vol. 2, pp. 60–65 (2005) Google Scholar
  17. 17.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Chen, W., Chen, M., Zhou, J.: Adaptively regularized constrained total least-squares Image Restoration. IEEE Trans. Image Process. 9(4), 588–596 (2000) zbMATHCrossRefGoogle Scholar
  19. 19.
    Fessler, J.A., Erdoğan, H.: A paraboloidal surrogates algorithm for convergent penalized-likelihood emission reconstruction. In: Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf., vol. 2, pp. 1132–1135 (1998) Google Scholar
  20. 20.
    Erdoğan, H., Fessler, J.A.: Monotonic algorithms for transmission tomography. IEEE Trans. Med. Imaging 18(9), 801–814 (1999) CrossRefGoogle Scholar
  21. 21.
    Lalush, D.S., Tsui, B.M.W.: A fast and stable maximum a posteriori conjugate gradient reconstruction algorithm. Med. Phys. 22(8), 1273–1284 (1995) CrossRefGoogle Scholar
  22. 22.
    Fessler, J.A., Booth, S.D.: Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction. IEEE Trans. Image Process. 8(5), 688–699 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Booth, S.D., Fessler, J.A.: Combined diagonal/Fourier preconditioning methods for image reconstruction in emission tomography. In: Proc. IEEE Int. Conf. on Image Processing, vol. 2, pp. 441–444 (1995) Google Scholar
  24. 24.
    Alenius, S., Ruotsalainen, U.: Generalization of median root prior reconstruction. IEEE Trans. Med. Imaging 21(11), 1413–1420 (2002) CrossRefGoogle Scholar
  25. 25.
    Hsiao, I.T., Rangarajan, A., Gindi, G.R.: A new convex edge-preserving median prior with applications to tomography. IEEE Trans. Med. Imaging 22(5), 580–585 (2003) CrossRefGoogle Scholar
  26. 26.
    Fessler, J.A.: Aspire 3.0 user’s guide: a sparse reconstruction library. Communication & Signal Processing Laboratory Technical Report No. 293, Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor (1998) Google Scholar
  27. 27.
    Chang, J.-H., Anderson, J.M.M.: Regularized image reconstruction algorithms for positron emission tomography. IEEE Trans. Med. Imaging 23(9), 1165–1175 (2004) CrossRefGoogle Scholar
  28. 28.
    Houdson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered sunsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994) CrossRefGoogle Scholar
  29. 29.
    Fessler, J.A., Hero, A.O.: Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Trans. Image Process. 4, 1417–1429 (1995) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yang Chen
    • 1
    • 2
  • Jianhua Ma
    • 2
  • Qianjin Feng
    • 2
  • Limin Luo
    • 1
  • Pengcheng Shi
    • 2
  • Wufan Chen
    • 2
    Email author
  1. 1.Laboratory of Image Science and TechnologySoutheast UniversityNanjingChina
  2. 2.School of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina

Personalised recommendations