Advertisement

Journal of Mathematical Imaging and Vision

, Volume 30, Issue 1, pp 73–85 | Cite as

Measuring Elongation from Shape Boundary

  • Miloš Stojmenović
  • Joviša ŽunićEmail author
Article

Abstract

Shape elongation is one of the basic shape descriptors that has a very clear intuitive meaning. That is the reason for its applicability in many shape classification tasks. In this paper we define a new method for computing shape elongation. The new measure is boundary based and uses all the boundary points. We start with shapes having polygonal boundaries. After that we extend the method to shapes with arbitrary boundaries. The new elongation measure converges when the assigned polygonal approximation converges toward a shape. We express the measure with closed formulas in both cases: for polygonal shapes and for arbitrary shapes. The new measure finds the elongation for shapes whose boundary is not extracted completely, which is impossible to achieve with area based measures.

Keywords

Shape Elongation Orientation Image processing Computer vision Early vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandt, S., Laaksonen, J., Oja, E.: Statistical shape features for content-based image retrieval. J. Math. Imaging Vis. 17, 187–198 (2002) CrossRefGoogle Scholar
  2. 2.
    Boxer, L.: Computing deviations from convexity in polygons. Pattern Recognit. Lett. 14, 163–167 (1993) zbMATHCrossRefGoogle Scholar
  3. 3.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–257 (2004) CrossRefGoogle Scholar
  4. 4.
    Freeman, H.: Boundary encoding and processing. In: Lipkin, B.S., Rosenfeld, A. (eds.) Picture Processing and Psyhopictorics, pp. 391–402. Academic Press, New York (1970) Google Scholar
  5. 5.
    Freeman, H., Shapira, R.: Determining the minimum-area encasing rectangle for an arbitrary closed curve. Commun. ACM 18, 409–413 (1975) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986) Google Scholar
  7. 7.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995) Google Scholar
  8. 8.
    Kakarala, R.: Testing for convexity with Fourier descriptors. Electron. Lett. 14, 1392–1393 (1998) CrossRefGoogle Scholar
  9. 9.
    Klette, R., Rosenfeld, A.: Digital Geometry. Kaufmann, San Francisco (2004) zbMATHGoogle Scholar
  10. 10.
    Martin, R.R., Stephenson, P.C.: Putting objects into boxes. Comput. Aided Des. 20, 506–514 (1988) CrossRefGoogle Scholar
  11. 11.
    Rahtu, E., Salo, M., Heikkilä, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1501–1512 (2006) CrossRefGoogle Scholar
  12. 12.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1, 244–256 (1972) CrossRefGoogle Scholar
  13. 13.
    Rosin, P.L.: Techniques for assessing polygonal approximations of curves. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 659–666 (1997) CrossRefGoogle Scholar
  14. 14.
    Rosin, P.L.: Measuring shape: ellipticity, rectangularity, and triangularity. Mach. Vis. Appl. 14, 172–184 (2003) Google Scholar
  15. 15.
    Rosin, P.L., Mumford, C.L.: A symmetric convexity measure. Comput. Vis. Image Underst. 103, 101–111 (2006) CrossRefGoogle Scholar
  16. 16.
    Stojmenović, M., Žunić, J.: New measure for shape elongation. In: IbPRIA 2007, 3rd Iberian Conference on Pattern Recognition and Image Analysis. Lecture Notes in Computer Science, vol. 4478, pp. 572–579 (2007) Google Scholar
  17. 17.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Chapman and Hall, London (1993) Google Scholar
  18. 18.
    Tsai, W.H., Chou, S.L.: Detection of generalized principal axes in rotationally symmetric shapes. Pattern Recognit. 24, 95–104 (1991) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Žunić, J., Kopanja, L., Fieldsend, J.E.: Notes on shape orientation where the standard method does not work. Pattern Recognit. 39(5), 856–865 (2006) CrossRefGoogle Scholar
  20. 20.
    Žunić, J.: Boundary based orientation of polygonal shapes. In: Lecture Notes in Computer Science, Hsinchu, Taiwan, PSIVT, December 2006, pp. 108–117 (2006) Google Scholar
  21. 21.
    Žunić, J., Rosin, P.L.: A new convexity measurement for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 26, 923–934 (2004) CrossRefGoogle Scholar
  22. 22.
    Žunić, J., Stojmenović, M.: Boundary based shape orientation. Pattern Recognit. (2007). doi: 10.1016/j.patcog.2007.10.007

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.SITEUniversity of OttawaOttawaCanada
  2. 2.Computer Science DepartmentExeter UniversityExeterUK

Personalised recommendations