Journal of Mathematical Imaging and Vision

, Volume 30, Issue 1, pp 1–12 | Cite as

A Fast Marching Method for the Area Based Affine Distance

  • Moacyr A. H. B. da SilvaEmail author
  • Ralph Teixeira
  • Sinésio Pesco
  • Marcos Craizer


In a previous paper, it was proved that the area based affine distance of a convex region in the plane satisfies a non-homogeneous Monge-Ampère differential equation. Based on this equation, in this paper we propose a fast marching method for the computation of this distance. The proposed algorithm has a lower computational complexity than the direct method and we have proved its convergence. And since the algorithm allows one to obtain a connection from any point of the region to the boundary by a path of decreasing distance, it offers a dynamic point of view for the area based affine distance.


Affine distances Affine geometry Fast marching methods Monge-Ampère equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betelu, S., Sapiro, G., Tannenbaum, A.: Affine invariant erosion of 3d shapes. IEEE Proc. Int. Conf. Comput. Vis. 2, 174–180 (2001) Google Scholar
  2. 2.
    Blum, H.: Biological shape and visual science. J. Theor. Biol. 38, 205–287 (1973) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Moisan, L.: Affine plane curve evolution: a fully consistent scheme. IEEE Trans. Image Process. 7(3), 411–420 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Niethammer, M., Betelu, S., Sapiro, G., Tannenbaum, A., Giblin, P.J.: Area-based medial axis of planar curves. Int. J. Comput. Vis. 60(3), 203–224 (2004) CrossRefGoogle Scholar
  5. 5.
    Ogniewicz, R.: Discrete Voronoi Skeletons. Hartung-Gorre (1993) Google Scholar
  6. 6.
    Giblin, P.J., Sapiro, G.: Affine invariant distances, envelopes and symmetry sets. Geom. Dedicata 71, 237–261 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Sedgewick, R.: Algorithms. Addison-Wesley, Reading (1988) Google Scholar
  8. 8.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982) zbMATHGoogle Scholar
  9. 9.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, New York (1988) Google Scholar
  10. 10.
    Sethian, J.A.: Fast Marching Methods and Level Set Methods. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  11. 11.
    Silva, M.A.: Esqueletos Afins e Equações de Propagação. PhD thesis, Instituto de Matemática Pura e Aplicada—IMPA (2005) (in Portuguese) Google Scholar
  12. 12.
    Silva, M.A., Teixeira, R.C.: Affine skeletons and propagation equations. Preprint (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Moacyr A. H. B. da Silva
    • 1
    Email author
  • Ralph Teixeira
    • 1
  • Sinésio Pesco
    • 2
  • Marcos Craizer
    • 2
  1. 1.FGVFundação Getulio VargasRio de JaneiroBrazil
  2. 2.Departamento de MatemáticaPUC–RioRio de JaneiroBrazil

Personalised recommendations