Journal of Mathematical Imaging and Vision

, Volume 30, Issue 1, pp 43–71 | Cite as

Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context

  • Fethi Smach
  • Cedric Lemaître
  • Jean-Paul Gauthier
  • Johel Miteran
  • Mohamed Atri


This paper is about generalized Fourier descriptors, and their application to the research of invariants under group actions. A general methodology is developed, crucially related to Pontryagin’s, Tannaka’s, Chu’s and Tatsuuma’s dualities, from abstract harmonic analysis. Application to motion groups provides a general methodology for pattern recognition. This methodology generalizes the classical basic method of Fourier-invariants of contours of objects. In the paper, we use the results of this theory, inside a Support-Vector-Machine context, for 3D objects-recognition. As usual in practice, we classify 3D objects starting from 2D information. However our method is rather general and could be applied directly to 3D data, in other contexts.

Our applications and comparisons with other methods are about human-face recognition, but also we provide tests and comparisons based upon standard data-bases such as the COIL data-base. Our methodology looks extremely efficient, and effective computations are rather simple and low cost.

The paper is divided in two parts: first, the part relative to applications and computations, in a SVM environment. The second part is devoted to the development of the general theory of generalized Fourier-descriptors, with several new results, about their completeness in particular. These results lead to simple formulas for motion-invariants of images, that are “complete” in a certain sense, and that are used in the first part of the paper. The computation of these invariants requires only standard FFT estimations, and one dimensional integration.


Harmonic analysis Invariants theory SVM Fourier descriptors Pattern recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, R., Robbin, J.: Transversal Mappings and Flows. Benjamin, Elmsford (1967) MATHGoogle Scholar
  2. 2.
    Auslander, L., Tolimieri, R.: Is computing with the finite Fourier transform pure or applied mathematics? Bull. Am. Math. Soc. (N.S.) 1(6), 847–897 (1979) MATHMathSciNetGoogle Scholar
  3. 3.
    Barut, A.O., Raczka, R.: Theory of Group Representations and Applications, 2nd edn. World Scientific, Singapore (1986) MATHGoogle Scholar
  4. 4.
    Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997) CrossRefGoogle Scholar
  5. 5.
    Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings orf the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, New York (1992) CrossRefGoogle Scholar
  6. 6.
    Chong, C.-W., Raveendran, P., Mukundan, R.: Translation invariants of Zernike moments. Pattern Recognit. 36, 1765–1773 (2003) MATHCrossRefGoogle Scholar
  7. 7.
    Chen, S.: A new vision system and the Fourier descriptors method by group representations. In: IEEE CDC Conference, Las Vegas, USA (1985) Google Scholar
  8. 8.
    Chirikjian, G.S., Kyatkin, A.B.: Engineering Applications of Noncommutative Harmonic Analysis. with Emphasis on Rotation and Motion Groups. CRC Press, Boca Raton (2001) MATHGoogle Scholar
  9. 9.
    Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. Software available at (2001)
  10. 10.
    Chu, H.: Compactification and duality of topological groups. Trans. Am. Math. Soc. 123, 310–324 (1966) MATHCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Dixmier, J.: Les C *-algèbres et leurs représentations. Gauthier-Villars, Paris (1969) Google Scholar
  13. 13.
    Fonga, H.: Analyse harmonique sur les groupes et reconnaissance de formes. PhD thesis, Université de Grenoble (1992) Google Scholar
  14. 14.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, New York (1990) MATHGoogle Scholar
  15. 15.
    Gauthier, J.P., Bornard, G., Silbermann, M.: Harmonic analysis on motion groups and their homogeneous spaces. IEEE Trans. Syst. Man Cybern. 21 (1991) Google Scholar
  16. 16.
    Geller, D., Kra, I., Popescu, S., Simanca, S.: On circulant matrices. Preprint, Stony Brook University Google Scholar
  17. 17.
    Ghorbel, F.: A complete invariant description for grey level images by the harmonic analysis approach. Pattern Recognit. Lett. 15 (1994) Google Scholar
  18. 18.
    Gourd, F.: Quelques méthodes d’analyse harmonique en théorie de la détection et de la reconnaissance de formes. PhD thesis, Université de Grenoble (1990) Google Scholar
  19. 19.
    Gourd, F., Gauthier, J.P., Younes, H.: Une méthode d’invariants de l’analyse harmonique en reconnaissance de formes. Traitement Signal 6(3) (1989) Google Scholar
  20. 20.
    Guo, G.-D., Li, S., Chan, K.: Face recognition by support vector machines. In: Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 196–201 (2000) Google Scholar
  21. 21.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Springer, Berlin (1963) MATHGoogle Scholar
  22. 22.
    Heyer, H.: Dualität über Lokal Kompakter Gruppen. Springer, Berlin (1970) Google Scholar
  23. 23.
    Hjelmas, E.: Face detection: a survey. Comput. Vis. Image Underst. 83, 236–274 (2001) MATHCrossRefGoogle Scholar
  24. 24.
    Huang, R., Pavlovic, V., Metxas, D.N.: A hybrid face recognition method using Markov random fields. In: Proceedings of ICPR, pp. 157–160 (2004) Google Scholar
  25. 25.
    Joyal, A., Street, R.: An introduction to Tannaka duality and quantum groups. In: Lecture Notes in Mathematics, vol. 1488, pp. 411–492. Springer, Berlin (1991) Google Scholar
  26. 26.
    Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: ECCV, pp. 404–416 (2004) Google Scholar
  27. 27.
    Kanatani, K.: Group Theoretical Methods in Image Understanding. Springer, Berlin (1990) MATHGoogle Scholar
  28. 28.
    Kanatani, K., Chou, T.: Shape from texture: general principle. Artif. Intell. 38(1), 1–48 (1989) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Khotanzad, A., Yaw, H.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990) CrossRefGoogle Scholar
  30. 30.
    Kyatkin, A.B., Chirikjian, G.S.: Pattern matching as a correlation on the discrete motion group. Comput. Vis. Image Underst. 74(1), 22–35 (1999) CrossRefGoogle Scholar
  31. 31.
    Kyatkin, A.B., Chirikjian, G.S.: Algorithms for fast convolution on motion groups. Appl. Comput. Harmon. Anal. 9, 220–241 (2000) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural network approach. IEEE Trans. Neural Netw. 8, 98–113 (1997) CrossRefGoogle Scholar
  33. 33.
    Leduc, J.P.: A group-theoretic construction with spatiotemporal wavelets for the analysis of rotational motion. J. Math. Imaging Vis. 17(3), 207–236 (2002) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Lowe, D.: Distinctive image features from scale invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004) CrossRefGoogle Scholar
  35. 35.
    Martinez, A.M.: Recognition of partially occluded and/or imprecisely localized faces using probabilistic approach. In: Proceedings of IEEE Computer Vision and Pattern Recognition, CVPR’2000, pp. 712–717 (2000) Google Scholar
  36. 36.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002) Google Scholar
  37. 37.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004) CrossRefGoogle Scholar
  38. 38.
    Mukundan, R., Ramakrishnan, K.R.: Moment Functions in Image Analysis-Theory and Applications. World Scientific, Singapore (1998) MATHGoogle Scholar
  39. 39.
    Mukundan, R., Ramakrishnan, K.R.: Fast computation of Legendre and Zernike moments. Pattern Recognit. 28(9), 1433–1442 (1995) CrossRefMathSciNetGoogle Scholar
  40. 40.
    Murase, H., Nayar, S.K.: Visual learning and recognition of 3D objects from appearance. Int. J. Comput. Vis. 14(1), 5–24 (1995) CrossRefGoogle Scholar
  41. 41.
    Murenzi, R.: Wavelet transform associated to the n-dimensional Euclidean group with dilations: signals in more than one dimension. In: Combes, J.M., Grossmann, A., Tchamitchian, P. (eds.) Wavelets: Time-Frequency Methods in Phase Space, pp. 239–246 (1990) Google Scholar
  42. 42.
    Obrzalek, S., Matas, J.: Object recognition using local affine frames on distinguished regions. In: Electronic Proceeding of the 13th British Machine Vision Conference, University of Cardiff, pp. 113–122 (2002) Google Scholar
  43. 43.
    ORL face database, AT&T Laboratories, Cambridge, U.K.
  44. 44.
  45. 45.
    Persoon, O., King, S.F.: Shape discrimination using Fourier descriptors, IEEE Syst. Man Cybern. 7(3) (1977) Google Scholar
  46. 46.
    Rockmore, D.N.: Recent progress and applications in group FFTs. In: Computational noncommutative algebra and applications. NATO Sci. Ser. II Math. Phys. Chem., vol. 136, pp. 227–254. Kluwer Academic, Dordrecht (2004) CrossRefGoogle Scholar
  47. 47.
    Samaria, F.S., Harter, A.C.: Parametrization of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision (1994) Google Scholar
  48. 48.
    Segman, J., Zeevi, Y.: Image analysis by wavelet type transforms: group theoretical approach. J. Math. Imaging Vis. 3, 51–77 (1993) MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Tatsuuma, N.: A duality theorem for locally compact groups. J. Math. Kyoto Univ. 6, 187–293 (1967) MathSciNetGoogle Scholar
  50. 50.
    Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61–85 (2004) CrossRefGoogle Scholar
  51. 51.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991) CrossRefGoogle Scholar
  52. 52.
    Turski, J.: Geometric Fourier analysis of the conformal camera for active vision. SIAM Rev. 46(1) (2004) Google Scholar
  53. 53.
    Vapnik, V.N.: The Statistical Learning Theory. Springer, Berlin (1998) Google Scholar
  54. 54.
    Vapnik, V.N., Chervonenkis, A.J.: On the uniform convergences of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971) CrossRefMATHGoogle Scholar
  55. 55.
    Vilenkin, N.: Fonctions spéciales et théorie de la représentation des groupes. Dunod, Paris (1969) MATHGoogle Scholar
  56. 56.
    Warner, G.: Harmonic Analysis on Semi-Simple Lie Groups. Springer, Berlin (1972) Google Scholar
  57. 57.
    Weil, A.: L’intégration dans les groupes topologiques et ses applications. Hermann, Paris (1965) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fethi Smach
    • 1
  • Cedric Lemaître
    • 2
  • Jean-Paul Gauthier
    • 2
  • Johel Miteran
    • 2
  • Mohamed Atri
    • 3
  1. 1.CES Laboratory, ENISUniversity of SfaxSfaxTunisia
  2. 2.Le2i, UMR CNRS 5158University of BurgundyDijonFrance
  3. 3.Laboratory of Electronics (EμE)FSMMonastirTunisia

Personalised recommendations