Journal of Mathematical Imaging and Vision

, Volume 29, Issue 2–3, pp 141–162 | Cite as

Automatic Image Segmentation by Tree Pruning

  • Felipe P. G. Bergo
  • Alexandre X. Falcão
  • Paulo A. V. Miranda
  • Leonardo M. Rocha


The Image Foresting Transform (IFT) is a tool for the design of image processing operators based on connectivity, which reduces image processing problems into an optimum-path forest problem in a graph derived from the image. A new image operator is presented, which solves segmentation by pruning trees of the forest. An IFT is applied to create an optimum-path forest whose roots are seed pixels, selected inside a desired object. In this forest, object and background are connected by optimum paths (leaking paths), which cross the object’s boundary through its “most weakly connected” parts (leaking pixels). These leaking pixels are automatically identified and their subtrees are eliminated, such that the remaining forest defines the object. Tree pruning runs in linear time, is extensible to multidimensional images, is free of ad hoc parameters, and requires only internal seeds, with little interference from the heterogeneity of the background. These aspects favor solutions for automatic segmentation. We present a formal definition of the obtained objects, algorithms, sufficient conditions for tree pruning, and two applications involving automatic segmentation: 3D MR-image segmentation of the human brain and image segmentation of license plates. Given that its most competitive approach is the watershed transform by markers, we also include a comparative analysis between them.


Image segmentation Graph-search algorithms Image foresting transform Image processing Watershed transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audigier, R., Lotufo, R.A., Falcão, A.X.: 3D visualization to assist iterative object definition from medical images. Comput. Med. Imaging Graph. 30(4), 217–230 (2006) CrossRefGoogle Scholar
  2. 2.
    Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Mathematical Morphology in Image Processing, pp. 433–481. Marcel Dekker, New York (1993) Google Scholar
  3. 3.
    Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: International Conference on Computer Vision (ICCV), vol. 1, pp. 105–112 (2001) Google Scholar
  4. 4.
    Cohen, L.D.: On active contour models and balloons. Comput. Vis. Graph. Image Process. Image Underst. 53(2), 211–218 (1991) MATHGoogle Scholar
  5. 5.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998) CrossRefGoogle Scholar
  6. 6.
    Cootes, T., Edwards, G., Taylor, C.J.: Active appearance models. In: European Conference on Computer Vision (ECCV), vol. 2, pp. 484–498 (1998) Google Scholar
  7. 7.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995) CrossRefGoogle Scholar
  8. 8.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience, New York (2000) Google Scholar
  9. 9.
    Falcão, A.X., Bergo, F.P.G.: Interactive volume segmentation with differential image foresting transforms. IEEE Trans. Med. Imaging 23(9), 1100–1108 (2004) CrossRefGoogle Scholar
  10. 10.
    Falcão, A.X., Bergo, F.P.G., Miranda, P.A.V.: Image segmentation by tree pruning. In: XVII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), October 2004, pp. 65–71. IEEE, New York (2004) CrossRefGoogle Scholar
  11. 11.
    Falcão, A.X., Costa, L.F., da Cunha, B.S.: Multiscale skeletons by image foresting transform and its applications to neuromorphometry. Pattern Recognit. 35(7), 1571–1582 (2002) MATHCrossRefGoogle Scholar
  12. 12.
    Falcão, A.X., da Cunha, B.S., Lotufo, R.A.: Design of connected operators using the image foresting transform. In: Proc. of SPIE on Medical Imaging, vol. 4322, pp. 468–479 (2001) Google Scholar
  13. 13.
    Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004) CrossRefGoogle Scholar
  14. 14.
    Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: live-wire-on-the-fly. IEEE Trans. Med. Imaging 19(1), 55–62 (2000) CrossRefGoogle Scholar
  15. 15.
    Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.A.: User-steered image segmentation paradigms: live-wire and live-lane. Graph. Models Image Process. 60(4), 233–260 (1998) CrossRefGoogle Scholar
  16. 16.
    Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962) MATHGoogle Scholar
  17. 17.
    Frackowiak, R.S.J., Friston, K.J., Frith, C., Dolan, R., Price, C.J., Zeki, S., Ashburner, J., Penny, W.D.: Human Brain Function, 2nd edn. Academic Press, New York (2003) Google Scholar
  18. 18.
    Grau, V., Mewes, A.U.J., Alcaniz, M., Kikinis, R., Warfield, S.K.: Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 23(4), 447–458 (2004) CrossRefGoogle Scholar
  19. 19.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, New York (1998) Google Scholar
  20. 20.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1987) CrossRefGoogle Scholar
  21. 21.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004) CrossRefGoogle Scholar
  22. 22.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, New York (2004) MATHGoogle Scholar
  23. 23.
    Lotufo, R.A., Falcão, A.X.: The ordered queue and the optimality of the watershed approaches. In: Mathematical Morphology and its Applications to Image and Signal Processing, vol. 18, pp. 341–350. Kluwer, Dordrecht (2000) Google Scholar
  24. 24.
    Lotufo, R.A., Falcão, A.X., Zampirolli, F.: IFT-Watershed from gray-scale marker. In: Proc. of XV Brazilian Symp. on Computer Graphics and Image Processing, October 2002, pp. 146–152. IEEE, New York (2002) CrossRefGoogle Scholar
  25. 25.
    Miranda, P.A.V., Bergo, F.P.G., Rocha, L.M., Falcão, A.X.: Tree-pruning: a new algorithm and its comparative analysis with the watershed transform for automatic image segmentation. In: XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), October 2006, pp. 37–44. IEEE, New York (2006) Google Scholar
  26. 26.
    Nyul, L.G., Falcão, A.X., Udupa, J.K.: Fuzzy-connected 3D image segmentation at interactive speeds. Graph. Models 64(5), 259–281 (2003) CrossRefGoogle Scholar
  27. 27.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inform. 41, 187–228 (2000) MATHMathSciNetGoogle Scholar
  28. 28.
    Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput. Vis. Image Underst. 82, 42–56 (2001) MATHCrossRefGoogle Scholar
  29. 29.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000) CrossRefGoogle Scholar
  30. 30.
    Torres, R.S., Falcão, A.X.: Contour salience descriptors for effective image retrieval and analysis. Image Vis. Comput. 25(1), 3–13 (2007) CrossRefGoogle Scholar
  31. 31.
    Torres, R.S., Falcão, A.X., Costa, L.F.: A graph-based approach for multiscale shape analysis. Pattern Recognit. 37(6), 1163–1174 (2004) CrossRefGoogle Scholar
  32. 32.
    Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58, 246–261 (1996) CrossRefGoogle Scholar
  33. 33.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6) (1991) Google Scholar
  34. 34.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Int. Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. I-511–I-518 (2001) Google Scholar
  35. 35.
    Wang, S., Siskind, J.M.: Image segmentation with minimum mean cut. In: Int. Conf. on Computer Vision (ICCV), vol. 1, pp. 517–525 (2001) Google Scholar
  36. 36.
    Zheng, D., Zhao, Y., Wang, J.: An efficient method of license plate location. Pattern Recognit. Lett. 26, 2431–2438 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Felipe P. G. Bergo
    • 1
  • Alexandre X. Falcão
    • 1
  • Paulo A. V. Miranda
    • 1
  • Leonardo M. Rocha
    • 2
  1. 1.LIV, Institute of ComputingState University of Campinas (UNICAMP)CampinasBrazil
  2. 2.DECOM, FEECState University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations