Journal of Mathematical Imaging and Vision

, Volume 29, Issue 2–3, pp 185–204 | Cite as

Surface Texture Using Photometric Stereo Data: Classification and Direction of Illumination Detection

  • Svetlana Barsky
  • Maria Petrou


This paper generalizes the recently proposed sinusoidal model used for modeling the variation of texture features under changes in illumination direction, so that it can handle surfaces which are very rough and of variable albedo. It deals with the problem of identifying the direction of illumination of a rough surface from a single image, using information from a photometric stereo set of images. In addition, it presents methodology for classifying the texture of a rough surface, using generalized normals that capture both shape and albedo information. It assumes that the surface is Lambertian and is presented to the camera in a fronto-parallel view.


3D textures Photometric stereo Illumination invariant recognition Illumination direction recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barsky, S., Petrou, M.: The 4-source photometric stereo technique for 3-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1239–1252 (2003) CrossRefGoogle Scholar
  2. 2.
    Chantler, M.J.: Why illuminant direction is fundamental to texture analysis. IEE Proc. Vis. Image Signal Process. 142(4), 199–206 (1995) CrossRefGoogle Scholar
  3. 3.
    Chantler, M.J., McGunnigle, G., Penirschke, A., Petrou, M.: Estimating lighting direction and classifying textures. In: Rosin, P.L., Marshall, D. (eds.) BMVC2002, British Machine Vision Conference, Cardiff, 2–5 September 2002, vol. 2, pp. 737–746 (2002), ISBN 1-901725-19-7 Google Scholar
  4. 4.
    Chantler, M.J., Schmidt, M., Petrou, M., McGunnigle, G.: The effect of illuminant rotation on texture filters: Lissajous’s ellipses. In: ECCV2002, European Conference on Computer Vision, August 2002, vol. III, pp. 289–303 (2002) Google Scholar
  5. 5.
    Chantler, M.J., Petrou, M., Penirsche, A., Schmidt, M., McGunnigle, G.: Classifying surface texture while simultaneously estimating illumination direction. Int. J. Comput. Vis. 62, 83–96 (2005) Google Scholar
  6. 6.
    Coleman, E.N., Jain, R.: Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. Comput. Graph. Image Process. 18, 309–328 (1982) CrossRefGoogle Scholar
  7. 7.
    Cula, O.G., Dana, K.J.: 3D texture recognition using bidirectional feature histograms. Int. J. Comput. Vis. 59(1), 33–60 (2004) CrossRefGoogle Scholar
  8. 8.
    Dana, K.J., Nayar, S.K.: Histogram model for 3D textures. In: IEEE Conference on Computer Vision and Pattern Recognition, June 1998, pp. 618–624 (1998) Google Scholar
  9. 9.
    Dana, K.J., Nayar, S.K.: Correlation model for 3D textures. In: ICCV99: IEEE International Conference on Computer Vision, pp. 1061–1067 (1999) Google Scholar
  10. 10.
    Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: IEEE Conference on Computer Vision and Pattern Recognition, June 1997, pp. 151–157 (1997) Google Scholar
  11. 11.
    van Ginneken, B., Koenderink, J.J., Dana, K.J.: Texture histograms as a function of irradiation and viewing direction. Int. J. Comput. Vis. 31(2–3), 169–184 (1999) CrossRefGoogle Scholar
  12. 12.
    Healey, G., Wang, L.: Illumination-invariant recognition of texture in color images. J. Opt. Soc. Am. A 12(9), 1877–1883 (1995) CrossRefGoogle Scholar
  13. 13.
    Kay, G., Caelly, T.: Estimating the parameters of an illumination model using photometric stereo. Graph. Models Image Process. 57(5), 365–388 (1995) CrossRefGoogle Scholar
  14. 14.
    Koenderink, J.J., Pont, S.C.: Irradiation direction from texture. J. Opt. Soc. Am. A 20(10), 1875–1882 (2003) CrossRefGoogle Scholar
  15. 15.
    Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L., te Pas, S.F., Pont, S.C.: Illumination direction from texture shading. J. Opt. Soc. Am. A 20(6), 987 (2003) CrossRefGoogle Scholar
  16. 16.
    Kube, P., Pentland, A.P.: On the imaging of fractal surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 704–707 (1988) zbMATHCrossRefGoogle Scholar
  17. 17.
    Laws, K.I.: Textured image segmentation. PhD thesis, Electrical Engineering, University of Southern California (2003) Google Scholar
  18. 18.
    Leung, T., Malik, J.: Representing and recognising the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 1(43), 26–44 (2001) Google Scholar
  19. 19.
    Liu, X., Yu, Y., Shum, H.-Y.: Synthesizing bidirectional texture functions for real-world surfaces. In: SIGGRAPH, pp. 97–106 (2001) Google Scholar
  20. 20.
    Llado, X., Petrou, M., Marti, J.: Texture recognition by surface rendering. Opt. Eng. J. 44(3), 0370011 (2005) Google Scholar
  21. 21.
    Llado, X., Oliver, A., Petrou, M., Freixenet, J., Marti, J.: Simultaneous surface texture classification and illumination tilt angle prediction. In: Harvey, R., Bangham, J.A. (eds.) Proceedings of the British Machine Vision Conference, Norwich, England, 8–11 September 2003, pp. 789–798 (2003) Google Scholar
  22. 22.
    Nayar, S.K., Ikeuchi, K., Kanade, T.: Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Trans. Robot. Autom. 6(4), 418–431 (1990) CrossRefGoogle Scholar
  23. 23.
    Penirschke, A., Chantler, M.J., Petrou, M.: Illuminant rotation invariant classification of 3D surface textures using Lissajous‘s ellipses. In: Texture2002, The 2nd International Workshop on Texture Analysis and Synthesis, June 2002, pp. 101–107 (2002) Google Scholar
  24. 24.
    Smith, M.L.: The analysis of surface texture using photometric stereo acquisition and gradient space domain mapping. Image Vis. Comput. 17, 1009–1019 (1999) CrossRefGoogle Scholar
  25. 25.
    Smith, M.L., Hill, T., Smith, G.: Surface texture analysis based upon the visually acquired perturbation of surface normals. Image Vis. Comput. 15, 949–955 (1997) CrossRefGoogle Scholar
  26. 26.
    Smith, M.L.: Surface Inspection Techniques—Using the Integration of Innovative Machine Vision and Graphical Modelling Techniques. Professional Engineering Publishing (2000). ISBN 1-86058-292-3 Google Scholar
  27. 27.
    Suen, P., Healey, G.: The analysis and recognition of real-world textures in three dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 491–503 (2000) CrossRefGoogle Scholar
  28. 28.
    Tagare, H.D., de Figueiredo, R.J.P.: A theory of photometric stereo for a class of diffuse non-Lambertian surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 13(2), 133–152 (1991) CrossRefGoogle Scholar
  29. 29.
    Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.-Y.: Synthesizing bidirectional texture functions on arbitrary surfaces. In: SIGGRAPH, pp. 665–672 (2002) Google Scholar
  30. 30.
    Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2003, vol. 2, pp. 691–698 (2003) Google Scholar
  31. 31.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980) Google Scholar
  32. 32.
    Woodham, R.J., Iwahori, Y., Barman, R.A.: Photometric stereo: Lambertian reflectance and light sources with unknown direction and strength. Technical report, University of British Columbia Department of Computing Science (1991) Google Scholar
  33. 33.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Electrical and Electronic Engineering DepartmentImperial CollegeLondonUK

Personalised recommendations