Advertisement

Journal of Mathematical Imaging and Vision

, Volume 29, Issue 2–3, pp 163–183 | Cite as

Generalized Rigid and Generalized Affine Image Registration and Interpolation by Geometric Multigrid

  • Stephen L. Keeling
Article

Abstract

Generalized rigid and generalized affine registration and interpolation obtained by finite displacements and by optical flow are here developed variationally and numerically as well as with respect to a geometric multigrid solution process. For high order optimality systems under natural boundary conditions, it is shown that the convergence criteria of Hackbusch (Iterative Solution of Large Sparse Systems of Equations. Springer, Berlin, 1993) are met. Specifically, the Galerkin formalism is used together with a multi-colored ordering of unknowns to permit vectorization of a symmetric successive over-relaxation on image processing systems. The geometric multigrid procedure is situated as an inner iteration within an outer Newton or lagged diffusivity iteration, which in turn is embedded within a pyramidal scheme that initializes each outer iteration from predictions obtained on coarser levels. Differences between results obtainable by finite displacements and by optical flows are elucidated. Specifically, independence of image order can be shown for optical flow but in general not for finite displacements. Also, while autonomous optical flows are used in practice, it is shown explicitly that finite displacements generate a broader class of registrations. This work is motivated by applications in histological reconstruction and in dynamic medical imaging, and results are shown for such realistic examples.

Keywords

Generalized rigid Generalized affine Image registration Image interpolation Geometric multigrid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) MATHGoogle Scholar
  2. 2.
    Aubin, J.: Approximation of Elliptic Boundary-Value Problems. Krieger, Huntington (1980) Google Scholar
  3. 3.
    Burton, R., Plank, G., Schneider, J., Grau, V., Ahammer, H., Keeling, S.L.: Lee, J., Smith, N., Gavaghan, D., Trayanova, N., Kohl, P., Three-dimensional models of individual cardiac histoanatomy: tools and challenges. Ann. NY Acad. Sci. 1080, 301–319 (2006) CrossRefGoogle Scholar
  4. 4.
    Chillingworth, D.R.J.: Differential Topology with a View to Applications. Pitman, London (1976) MATHGoogle Scholar
  5. 5.
    Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Med. Imaging 20(7), 568–582 (2001) CrossRefGoogle Scholar
  6. 6.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) MATHGoogle Scholar
  7. 7.
    Fischer, B., Modersitzki, J.: Curvature based image registration. J. Math. Imaging Vis. 18, 81–85 (2003) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fischer, B., Modersitzki, J.: Fast inversion of matrices arising in image processing. Numer. Algorithms 22, 1–11 (1999) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Garcin, L., Younes, L.: Geodesic image matching: a wavelet based energy minimization scheme. EMMCVPR (2005) Google Scholar
  10. 10.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, Berlin (1993) MATHGoogle Scholar
  11. 11.
    Haker, S., Tannenbaum, A., Kikinis, R.: Mass preserving mappings and image registration. In: MICCAI 2001, pp. 120–127 (2001) Google Scholar
  12. 12.
    Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image processing. SIAM J. Sci. Comput. (SISC) 27(3), 831–849 (2005) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Henn, S., Witsch, K.: Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput. (SISC) 23(4), 1077–1093 (2001) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Höllig, K.: Finite element methods with B-splines. In: Frontiers in Applied Mathematics, vol. 26. SIAM, Philadelphia (2003) Google Scholar
  15. 15.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 23, 185–203 (1981) CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Karakashian, O., Katsaounis, T.D.: A discontinuous Galerkin method for the incompressible Navier-Stokes equations. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Proceedings of the International Symposium on the Discontinuous Galerkin Method. Springer Lecture Notes in Computational Science and Engineering, vol. 11, pp. 157–166 (2000) Google Scholar
  18. 18.
    Keeling, S.L.: Image similarity based on intensity scaling. J. Math. Imaging Vis. (2007, to appear) Google Scholar
  19. 19.
    Keeling, S.L., Bammer, R.: A variational approach to magnetic resonance coil sensitivity estimation. Appl. Math. Comput. 158, 359–388 (2004) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Keeling, S.L., Haase, G.: Geometric multigrid for high-order regularizations of early vision problems. Appl. Math. Comput. 184, 536–556 (2007) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Keeling, S.L., Ring, W.: Medical image registration and interpolation by optical flow with maximal rigidity. J. Math. Imaging Vis. 23(1), 47–65 (2005) CrossRefMathSciNetGoogle Scholar
  22. 22.
  23. 23.
    Meurant, G.: Computer Solution of Large Linear Systems. Elsevier, New York (1999) MATHGoogle Scholar
  24. 24.
    Modersitzki, J.: FLIRT with rigidity—image registration with a local non-rigidity penalty. Int. J. Comput. Vis. 1–18 (2007) Google Scholar
  25. 25.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004) MATHGoogle Scholar
  26. 26.
    Peckar, W., Schnörr, C., Rohr, K., Stiehl, H.S.: Parameter-free elastic deformation approach for 2D and 3D registration using prescribed displacements. J. Math. Imaging Vis. 10, 143–162 (1999) MATHCrossRefGoogle Scholar
  27. 27.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999) CrossRefGoogle Scholar
  28. 28.
    Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001) MATHGoogle Scholar
  29. 29.
    Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut für Mathematik und Wissenschaftliches RechnenKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations