Advertisement

Journal of Mathematical Imaging and Vision

, Volume 28, Issue 2, pp 135–149 | Cite as

Conic Geometry and Autocalibration from Two Images

  • José I. Ronda
  • Antonio Valdés
Article

Abstract

We show how the classical theory of projective conics provides new insights and results on the problem of 3D reconstruction from two images taken with uncalibrated cameras. The close relationship between Kruppa equations and Poncelet’s Porism is investigated, leading, in particular, to a closed-form geometrically meaningful parameterization of the set of Euclidean reconstructions compatible with two images taken with cameras with constant intrinsic parameters and known pixel shape. An experiment with real images, showing the applicability of the method, is included.

Keywords

Camera autocalibration Conic geometry Kruppa configuration Poncelet’s Porism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bougnoux, S.: From projective to Euclidean space under any practical situation, a criticism of self-calibration. In: Sixth International Conference on Computer Vision, pp. 790–796, 1998 Google Scholar
  2. 2.
    Hartley, R.: Estimation of Relative Camera Positions for Uncalibrated Cameras. Lecture Notes In Computer Science, vol. 588. Proceedings of the Second European Conference on Computer Vision, pp. 579–587, 1992 Google Scholar
  3. 3.
    Hartley, R., Zisserman, A.: Multiple-View Geometry in Computer Vision. Cambridge Univ. Press, Cambridge (2000) zbMATHGoogle Scholar
  4. 4.
    Huang, C.-R., Chen, C.-S., Chung, P.-C.: An improved algorithm for two-image camera self-calibration and Euclidean structure recovery using absolute quadric. Pattern Recognit. 37(8), 1713–1722 (2004) CrossRefGoogle Scholar
  5. 5.
    Liu, J.S., Chuang, J.H.: Self-calibration with varying focal length from two images obtained by a stereo head. Pattern Recognit. 35, 2937–2948 (2002) zbMATHCrossRefGoogle Scholar
  6. 6.
    Maybank, S., Faugeras, O.: A theory of self–calibration of a moving camera. Int. J. Comput. Vis. 8(2), 123–141 (1992) CrossRefGoogle Scholar
  7. 7.
    Newsam, G.N., Huynh, D.Q., Brooks, M.J., Pan, H.P.: Recovering unknown focal lengths in self-calibration: an essentially linear algorithm and degenerate configurations. In: ISPRS-Congress XXXI (B3), pp. 575–580, 1996 Google Scholar
  8. 8.
    Nister, D., Schaffalitzky, F.: What do four Points in two calibrated images tell us about the epipoles? In: Pajdla, T., Matas, J. (Eds.) ECCV 2004, LNCS 3022, pp. 41–57, Springer Google Scholar
  9. 9.
    Ponce, J., McHenry, K., Papadopoulo, T., Teillaud, M., Triggs, B.: On the absolute quadratic complex and its application to autocalibration. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. I, pp. 780–787, San Diego, CA, June 2005 Google Scholar
  10. 10.
    Quan, L.: Conic reconstruction and correspondence from two views. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 151–160 (1996) CrossRefGoogle Scholar
  11. 11.
    Semple, J.G., Kneebone, G.T.: Algebraic Projective Geometry. Oxford University Press, London (1998) zbMATHGoogle Scholar
  12. 12.
    Sturm, P.: Focal length calibration from two views: method and analysis of singular cases. Comput. Vis. Image Underst. 99(1), 58–95 (2005) CrossRefGoogle Scholar
  13. 13.
    Valdés, A., Ronda, J.I., Gallego, G.: The absolute line quadric and camera autocalibration. Int. J. Comput. Vis. 66(3), 283–303 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Grupo de Tratamiento de ImágenesUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Geometría y TopologíaUniversidad Complutense de MadridMadridSpain

Personalised recommendations