Journal of Mathematical Imaging and Vision

, Volume 28, Issue 3, pp 191–208 | Cite as

A Bilinear Approach to the Parameter Estimation of a General Heteroscedastic Linear System, with Application to Conic Fitting

Article

Abstract

In this paper, we employ low-rank matrix approximation to solve a general parameter estimation problem: where a non-linear system is linearized by treating the carrier terms as separate variables, thereby introducing heteroscedastic noise. We extend the bilinear approach to handle cases with heteroscedastic noise, in the framework of low-rank approximation.

The ellipse fitting problem is investigated as a specific example of the general theory. Despite the impression given in the literature, the ellipse fitting problem is still unsolved when the data comes from a small section of the ellipse. Although there are already some good approaches to the problem of ellipse fitting, such as FNS and HEIV, convergence in these iterative approaches is not ensured, as pointed out in the literature. Another limitation of these approaches is that they cannot model the correlations among different rows of the “general measurement matrix”. Our method, of employing the bilinear approach to solve the general heteroscedastic parameter estimation problem, overcomes these limitations: it is convergent, at least to a local optimum, and can cope with a general heteroscedastic problem. Experiments show that the proposed bilinear approach performs better than other competing approaches: although it is still far short of a solution when the data comes from a very small arc of the ellipse.

Keywords

Parameter estimation Heteroscedastic uncertainty Bilinear approach Low-rank matrix approximation Least squares estimate Mahalanobis distance Conic fitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguiar, P.M.Q., Moura, J.M.F.: Factorization as a rank 1 problem. In: CVPR (1999) Google Scholar
  2. 2.
    Aguiar, P.M.Q., Moura, J.M.F.: Weighted factorization. In: ICIP (2000) Google Scholar
  3. 3.
    Aguiar, P.M.Q., Moura, J.M.F.: Rank 1 weighted factorization for 3D structure recovery: algorithms and performance analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1134–1149 (2003) CrossRefGoogle Scholar
  4. 4.
    Anandan, P., Irani, M.: Factorization with uncertainty. Int. J. Comput. Vis. 49(2–3), 101–116 (2002) MATHCrossRefGoogle Scholar
  5. 5.
    Chen, P., Suter, D.: Recovering the missing components in a large noisy low-rank matrix: Application to SFM. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1051–1063 (2004) CrossRefGoogle Scholar
  6. 6.
    Chojnacki, W., et al.: On the fitting of surfaces to data with covariances. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1294–1303 (2000) CrossRefGoogle Scholar
  7. 7.
    Chojnacki, W., et al.: Revisiting Hartley’s normalized eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1172–1177 (2003) CrossRefGoogle Scholar
  8. 8.
    Chojnacki, W., et al.: From fns to heiv: a link between two vision parameter estimation methods. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 264–268 (2004) CrossRefGoogle Scholar
  9. 9.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999) CrossRefGoogle Scholar
  10. 10.
    Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996) MATHGoogle Scholar
  11. 11.
    Guerreiro, R.F.C., Aguiar, P.M.Q.: Estimation of rank deficient matrices from partial observations: two-step iterative algorithms. In: Energy Minimization Methods in Computer Vision and Pattern Recognition (2003) Google Scholar
  12. 12.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  13. 13.
    Huffel, S.V., Vandewalle, J.: The total least squares problem: computational aspects and analysis. SIAM (1991) Google Scholar
  14. 14.
    Irani, M., Anandan, P.: Factorization with uncertainty. In: Proc. European Conf. Computer Vision (2000) Google Scholar
  15. 15.
    Jacobs, D.: Linear fitting with missing data: Applications to structure-from-motion and to characterizing intensity images. In: CVPR (1997) Google Scholar
  16. 16.
    Jacobs, D.: Linear fitting with missing data for structure-from-motion. Comput. Vis. Image Underst. 82, 57–81 (2001) MATHCrossRefGoogle Scholar
  17. 17.
    Kahl, F., Heyden, A.: Structure and motion from points, lines and conics with affine cameras. In: Proc. European Conf. Computer Vision (1998) Google Scholar
  18. 18.
    Kahl, F., Heyden, A.: Affine structure and motion from points, lines and conics. Int. J. Comput. Vis. 33(3), 163–180 (1999) CrossRefGoogle Scholar
  19. 19.
    Kanatani, K.: Unbiased estimation and statistical analysis of 3-D rigid motion from two views. IEEE Trans. Pattern Anal. Mach. Intell. 15(1), 37–50 (1993) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kanatani, K.: Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 320–326 (1994) MATHCrossRefGoogle Scholar
  21. 21.
    Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Amsterdam, Elsevier (1996) MATHCrossRefGoogle Scholar
  22. 22.
    Leedan, Y., Meer, P.: Estimation with bilinear constraints in computer vision. In: Proc. International Conf. Computer Vision (1999) Google Scholar
  23. 23.
    Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: problems with bilinear constraint. Int. J. Comput. Vis. 37(2), 127–150 (2000) MATHCrossRefGoogle Scholar
  24. 24.
    Mahamud, S., et al.: Provably-convergent iterative methods for projective structure from motion. In: Proc. Conf. Computer Vision and Pattern Recognition (2001) Google Scholar
  25. 25.
    Manton, J.H., Mahony, R., Hua, Y.: The geometry of weighted low-rank approximations. IEEE Trans. Signal Process. 51(2), 500–514 (2003) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Matei, B., Meer, P.: A general method for Errors-in-Variables problems in computer vision. In: Proc. Conf. Computer Vision and Pattern Recognition (2000) Google Scholar
  27. 27.
    Matei, B., Meer, P.: Reduction of bias in maximum likelihood ellipse fitting. In: ICPR (2000) Google Scholar
  28. 28.
    Morris, D.D., Kanade, T.: A unified factorization algorithm for points, line segments and planes with uncertainty models. In: Proc. International Conf. Computer Vision (1998) Google Scholar
  29. 29.
    Press, W.H., et al.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992) MATHGoogle Scholar
  30. 30.
    Reid, I.D., Murray, D.W.: Active tracking of foveated feature clusters using affine structure. Int. J. Comput. Vis. 18(1), 41–60 (1996) CrossRefGoogle Scholar
  31. 31.
    Shum, H., Ikeuchi, K., Reddy, R.: Principal component analysis with missing data and its applications to polyhedral object modeling. IEEE Trans. Pattern Anal. Mach. Intell. 17(9), 854–867 (1995) CrossRefGoogle Scholar
  32. 32.
    Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, San Diego (1990) MATHGoogle Scholar
  33. 33.
    Vidal, R., Hartley, R.: Motion segmentation with missing data using PowerFactorization and GPCA. In: Proc. Conf. Computer Vision and Pattern Recognition (2004) Google Scholar
  34. 34.
    Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Image Vis. Comput. 15, 59–76 (1997) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Shenzhen Institute of Advanced Integration TechnologyChinese Academy of Sciences/The Chinese University of Hong KongShenzhenChina
  2. 2.Department of ECSEMonash UniversityMelbourneAustralia

Personalised recommendations