Advertisement

Journal of Mathematical Imaging and Vision

, Volume 27, Issue 2, pp 175–191 | Cite as

A Network Flow Algorithm for Reconstructing Binary Images from Discrete X-rays

  • Kees Joost BatenburgEmail author
Article

Abstract

We present a new algorithm for reconstructing binary images from their projections along a small number of directions. Our algorithm performs a sequence of related reconstructions, each using only two projections. The algorithm makes extensive use of network flow algorithms for solving the two-projection subproblems.

Our experimental results demonstrate that the algorithm can compute highly accurate reconstructions from a small number of projections, even in the presence of noise. Although the effectiveness of the algorithm is based on certain smoothness assumptions about the image, even tiny, non-smooth details are reconstructed exactly. The class of images for which the algorithm is most effective includes images of convex objects, but images of objects that contain holes or consist of multiple components can also be reconstructed very well.

Keywords

discrete tomography image reconstruction network flow problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, 1993.Google Scholar
  2. 2.
    R.P. Anstee, “The network flows approach for matrices with given row and column sums”, Discrete Math., Vol. 44, pp. 125–138, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. Barcucci, A. Del Lungo, M. Nivat, and R. Pinzani, “Reconstructing convex polyominoes from horizontal and vertical projections”, Theoret. Comput. Sci., Vol. 155, pp. 321–347, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    K.J. Batenburg, “A new algorithm for 3D binary tomography”,in Proceedings of the Workshop on Discrete Tomography and its Applications, New York, Electron. Notes Discrete Math., Vol. 20, 2005, pp. 247–261.CrossRefGoogle Scholar
  5. 5.
    S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, and M. Nivat, “Reconstruction of 4- and 8-connected convex discrete sets from row and column projections”, Linear Algebra Appl., Vol. 339, pp. 37–57, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Brunetti and A. Daurat, “An algorithm for reconstructing lattice convex sets”, Theoret. Comput. Sci., Vol. 304, pp. 35–57, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    P. Fishburn, P. Schwander, L. Shepp, and R. Vanderbei, “The discrete Radon transform and its approximate inversion via linear programming”, Discrete Appl. Math., Vol. 75, pp. 39–61, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for network problems”, SIAM J. Comput., Vol. 18, pp. 1013–1036, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Gale, “A theorem on flows in networks”, Pacific J. Math., Vol. 7, pp. 1073–1082, 1957.zbMATHMathSciNetGoogle Scholar
  10. 10.
    R.J. Gardner, Geometric Tomography, Cambridge University Press, New York, 1995.zbMATHGoogle Scholar
  11. 11.
    R.J. Gardner and P. Gritzmann, “Discrete tomography: determination of finite sets by X-rays”, Trans. Amer. Math. Soc., Vol. 349, pp. 2271–95, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    R.J. Gardner, P. Gritzmann, and D. Prangenberg, “On the computational complexity of reconstructing lattice sets from their X-rays”, Discrete Math., Vol. 202, pp. 45–71, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A.V. Goldberg, “An efficient implementation of a scaling minimum-cost flow algorithm”, J. Algorithms, Vol. 22, pp. 1–29, 1997.CrossRefMathSciNetGoogle Scholar
  14. 14.
    P. Gritzmann, S. de Vries, and M. Wiegelmann, “Approximating binary images from discrete X-rays”, SIAM J. Optim., Vol. 11, pp. 522–546, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography”, Int. J. Imag. Syst. Tech., Vol. 9, pp. 101–109, 1998.CrossRefGoogle Scholar
  16. 16.
    L. Hajdu and R. Tijdeman, “Algebraic aspects of discrete tomography”, J. Reine Angew. Math., Vol. 534, pp. 119–128, 2001.zbMATHMathSciNetGoogle Scholar
  17. 17.
    L. Hajdu and R. Tijdeman, “An algorithm for discrete tomography”, Linear Algebra Appl., Vol. 339, pp. 147–169, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    G.T. Herman and A. Kuba, (Eds.), Discrete Tomography: Foundations, Algorithms and Applications, Birkhäuser, Boston, 1999.zbMATHGoogle Scholar
  19. 19.
    J.R. Jinschek, K.J. Batenburg, H. Calderon, D. Van Dyck, F.-R. Chen, and C. Kisielowski, “Prospects for bright field and dark field electron tomography on a discrete grid”, Microsc. Microanal., Vol. 10 Suppl. 3, Cambridge Journals Online, 2004.Google Scholar
  20. 20.
    J.R. Jinschek, H.A. Calderon, K.J. Batenburg, V. Radmilovic and C. Kisielowski, “Discrete Tomography of Ga and InGa Particles from HREM Image Simulation and Exit Wave Reconstruction”, MRS Proc., Vol. 839, pp. 4.5.1–4.5.6, 2004.Google Scholar
  21. 21.
    C. Kisielowski, P. Schwander, F. Baumann, M. Seibt, Y. Kim, and A. Ourmazd, “An approach to quantitative high-resolution transmission electron microscopy of crystalline materials”, Ultramicroscopy, Vol. 58, pp. 131–155, 1995.CrossRefGoogle Scholar
  22. 22.
    H.J. Ryser, “Combinatorial properties of matrices of zeros and ones”, Canad. J. Math., Vol. 9, pp. 371–377, 1957.zbMATHMathSciNetGoogle Scholar
  23. 23.
    A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Springer-Verlag, Berlin, 2003.zbMATHGoogle Scholar
  24. 24.
    P. Schwander, C. Kisielowski, F. Baumann, Y. Kim, and A. Ourmazd, “Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy”, Phys. Rev. Lett., Vol. 71, pp. 4150–4153, 1993.CrossRefGoogle Scholar
  25. 25.
    C.H. Slump and J.J. Gerbrands, “A network flow approach to reconstruction of the left ventricle from two projections”, Comput. Gr. Im. Proc., Vol. 18, pp. 18–36, 1982.CrossRefGoogle Scholar
  26. 26.
    K. Tanabe, “Projection method for solving a singular system”, Numer. Math., Vol. 17, pp. 203–214, 1971.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    B. Wang and F. Zhang, “On the precise number of (0,1)-matrices in A(R,S)”, Discrete Math., Vol. 187, pp. 211–220, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    S. Weber, C. Schnörr, and J. Hornegger, “A linear programming relaxation for binary tomography with smoothness priors”, Electron. Notes Discrete Math., Vol. 12, 2003.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  1. 1.Leiden University and CWIThe Netherlands

Personalised recommendations