Advertisement

Journal of Mathematical Imaging and Vision

, Volume 26, Issue 3, pp 261–276 | Cite as

Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization

  • Jérôme Darbon
  • Marc Sigelle
Article

Abstract

This paper deals with the total variation minimization problem in image restoration for convex data fidelity functionals. We propose a new and fast algorithm which computes an exact solution in the discrete framework. Our method relies on the decomposition of an image into its level sets. It maps the original problems into independent binary Markov Random Field optimization problems at each level. Exact solutions of these binary problems are found thanks to minimum cost cut techniques in graphs. These binary solutions are proved to be monotone increasing with levels and yield thus an exact solution of the discrete original problem. Furthermore we show that minimization of total variation under L 1 data fidelity term yields a self-dual contrast invariant filter. Finally we present some results.

Keywords

restoration total variation level sets Markov random fields graph cuts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Alliney, “An Algorithm for the Minimization of Mixed l 1 and l 2 norms with Application to Bayesian Estimation,” IEEE Transactions on Signal Processing, Vol. 42, No. 3, pp. 618–627, 1994.CrossRefGoogle Scholar
  2. 2.
    S. Alliney, “A Property of the Minimum Vectors of a Regularizing Functional defined by Means of the Absolute Norm,” IEEE Transactions on Signal Processing, Vol. 45, No. 4, pp. 913–917, 1997.CrossRefGoogle Scholar
  3. 3.
    J.-F. Aujol, G. Aubert, L. Blanc-Feraud, and A. Chambolle, “Image decomposition into a bounded variation component and oscillating component,” Journal of Mathematical Imaging and Vision, Vol. 22, No. 1, pp. 71–88, 2005.CrossRefMathSciNetGoogle Scholar
  4. 4.
    J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, “Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection,” Technical Report 10, UCLA, 2005.Google Scholar
  5. 5.
    Y. Boykov and V. Kolmogorov, “Computing Geodesic and Minimal Surfaces via Graph Cuts,” In: International Conference on Computer Vision, Vol. 1, pp. 26–33, 2003.Google Scholar
  6. 6.
    Y. Boykov and V. Kolmogorov, An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 9, pp. 1124–1137, 2004.Google Scholar
  7. 7.
    Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy Minimization via Graph Cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 11, pp. 1222–1239, 2001.CrossRefGoogle Scholar
  8. 8.
    O. Catoni and I. Gaudron, “Détection de contours par seuillage adaptatif et restauration stochastique d’images binaires,” In: André Gagalowicz (ed.), Second Annual Conference on Computer Graphics in Paris, Pixim 89 ACM SIGGRAPH FRANCE Hermes, pp. 341–355, 1989.Google Scholar
  9. 9.
    A. Chambolle, “An Algorithm for Total Variation Minimization and Applications,” Journal of Mathematical Imaging and Vision, Vol. 20, pp. 89–97, 2004.CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Chambolle, “Total Variation minimization and a class of binary MRF models,” In Springer-Verlag, (ed.), 5th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition(EMMCVPR), Vol. LNCS 3757, pp. 136–152, 2005.Google Scholar
  11. 11.
    T. Chan, S. Esedoglu, and M. Nikolova, “Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models,” Technical Report 54, UCLA, 2004.Google Scholar
  12. 12.
    T. Chan and S. Esedoglu, “Aspect of Total Variation Regularized L 1 Function Approximation,” SIAM Journal of Applied Mathematics, Vol. 65, No. 5, pp. 1817–1837, 2005.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    T. Chan, A. Marquina, and P. Mulet, “High-Order Total Variation-Based Image Restoration,” SIAM J. on Scientific Computing, Vol. 22, No. 2, pp. 503–506, 2000.CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 2001.Google Scholar
  15. 15.
    J. Darbon and S. Peyronnet, “A Vectorial Self-Dual Morphological Filter based on Total Variation Minimization,” In: Springer-Verlag, (ed.), International Symposium on Visual Computing (ISVC), Vol. LNCS 3804, pp. 388–395, 2005.Google Scholar
  16. 16.
    J. Darbon and M. Sigelle, “Exact Optimization of Discrete Constrained Total Variation Minimization Problems,” In: Springer-Verlag, (ed.), Tenth International Workshop on Combinatorial Image Analysis (IWCIA 2004), Vol. LNCS 3322, pp. 540–549, 2004.Google Scholar
  17. 17.
    J. Darbon and M. Sigelle, “A Fast and Exact Algorithm for Total Variation Minimization,” In: Springer-Verlag, (ed.), 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPria), Vol. LNCS 3522, pp. 351–359, 2005.Google Scholar
  18. 18.
    J. Darbon, “Total Variation Minimization with L 1 Data Fidelity as a Contrast Invariant Filter,” In Proceedings of the 4th IEEE International Symposium on Image and Signal Processing and Analysis (ISPA 2005), Zagreb, Croatia, 2005.Google Scholar
  19. 19.
    P. Djurić, Y. Huang, and T. Ghirmai, “Perfect Sampling : A Review and Applications to Signal Processing,” IEEE Transactions on Signal Processing, Vol. 50, No. 2, pp. 345–256, 2002.CrossRefMathSciNetGoogle Scholar
  20. 20.
    R. L. Dobrushin, “The Problem of Uniqueness of a Gibbsian Random Field and the Problem of Phase Transition,” Functional Analysis and Applications, Vol. 2, pp. 302–312, 1968.CrossRefzbMATHGoogle Scholar
  21. 21.
    D. Dobson and C. Vogel, “Recovery of Blocky Images from Noisy and Blurred Data,” SIAM Journal on Applied Mathematics, Vol. 56, No. 4, pp. 1181–1199, 1996.CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    S. Durand, F. Malgouyres, and B. Rougé, “Image Deblurring, Spectrum Interpolation and Application to Satellite Imaging,” SIAM Journal on Applied Mathematics, Vol. 56, No. 4, pp. 1181–1199, 1996.CrossRefMathSciNetGoogle Scholar
  23. 23.
    L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, 1992.Google Scholar
  24. 24.
    G. Gallo, M. Grigoriadis, and R. Tarjan, “A fast parametric maximum flow algorithm and applications,” Siam Journal on Computing, Vol. 18, No. 1, pp. 30–55, 1989.CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,” IEEE Pattern Analysis and Machine Intelligence, Vol. 6, No. 6, pp. 721–741, 1984.CrossRefzbMATHGoogle Scholar
  26. 26.
    H-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter - Studies in Mathematics, Vol. 9. 1988.Google Scholar
  27. 27.
    D. Greig, B. Porteous, and A. Seheult, “Exact maximum a posteriori estimation for binary images,” Journal of the Royal Statistics Society, Vol. 51, No. 2, pp. 271–279, 1989.Google Scholar
  28. 28.
    F. Guichard and J. Morel, “Mathematical Morphology, Almost Everywhere”, In: Proceedings of ISMM, pp. 293–303. (2002).Google Scholar
  29. 29.
    D. Hochbaum, “An efficient algorithm for image segmentation, Markov Random Fields and related problems,” Journal of the ACM, Vol. 48, No. 2, pp. 686–701, 2001.CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    H. Ishikawa, “Exact optimization for Markov random fields with convex priors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 10, pp. 1333–1336, 2003.CrossRefGoogle Scholar
  31. 31.
    V. Kolmogorov and R. Zabih, “What Energy can be Minimized via Graph Cuts?” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 2, pp. 147–159, 2004.CrossRefGoogle Scholar
  32. 32.
    Y. Meyer. Oscillating patterns in image processing and nonlinear evolution equations, Vol. 22 of University Lecture Series, American Mathematical Society, Providence, RI, 2001, The fifteenth Dean Jacqueline B. Lewis memorial lectures.Google Scholar
  33. 33.
    H. Nguyen, M. Worring, and R. van den Boomgaard, “Watersnakes: Energy-Driven Watershed Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 3, pp. 330–342, 2003.CrossRefGoogle Scholar
  34. 34.
    M. Nikolova, “Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms,” SIAM J. Num. Anal., Vol. 40, No. 3, pp. 965–994, 2002.CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    M. Nikolova, “A Variational Approach to Remove Outliers and Impulse Noise,” Journal of Mathematical Imaging and Vision, Vol. 20, pp. 99–120, 2004.CrossRefMathSciNetGoogle Scholar
  36. 36.
    S. Osher, A. Solé, and L. Vese, “Image Decomposition and Restoration Using Total Variation Minimization and the H −1 Norm,” J. Mult. Model. and Simul., Vol. 1, No. 3, 2003.Google Scholar
  37. 37.
    E. Pechersky, A. Maruani, and M. Sigelle, “On Gibbs Fields in Image Processing,” Markov Processes and Related Fields, Vol. 1, No. 3, pp. 419–442, 1995.MathSciNetzbMATHGoogle Scholar
  38. 38.
    I. Pollak, A. Willsky, and Y. Huang, “Nonlinear Evolution Equations as Fast and Exact Solvers of Estimation Problems,” IEEE Transactions on Signal Processing, Vol. 53, No. 2, pp. 484–498, 2005.CrossRefMathSciNetGoogle Scholar
  39. 39.
    J.G. Propp and D.B. Wilson, “Exact sampling with coupled Markov chains and statistical mechanics,” Random Structures and Algorithms, Vol. 9, No. 1, pp. 223–252, 1996.CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    L. Rudin, S. Osher, and E. Fatemi, “Nonlinear Total Variation Based Noise Removal Algorithms,” Physica D., Vol. 60, pp. 259–268, 1992.CrossRefzbMATHGoogle Scholar
  41. 41.
    K. Sauer and C. Bouman, “Bayesian Estimation Of Transmission Tomograms Using Segmentation Based Optimization,” IEEE Transactions on Nuclear Science, Vol. 39, No. 4, pp. 1144–1152, 1992.CrossRefGoogle Scholar
  42. 42.
    M. Sigelle, Champs de Markov en Traitement d’Images et Modèles de la Physique Statistique : Application à la Relaxation d’Images de Classification http://www.tsi.enst.fr/sigelle/tsi-these.html. PhD thesis, ENST, 1993.
  43. 43.
    L. Vese and S. Osher, “Image Denoising and Decomposition with Total Variation and Oscillatory Functions,” Journal of Mathematical Imaging and Vision, Vol. 20, No. 1–2, pp. 7–18, 2004.CrossRefMathSciNetGoogle Scholar
  44. 44.
    C. Vogel and M. Oman, “Iterative Method for Total Variation Denoising,” SIAM J. Sci. Comput., Vol. 17, pp. 227–238, 1996.CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods,” Applications of mathematics. Springer-Verlag, 2003.Google Scholar
  46. 46.
    W. Yin, D. Goldfarb, and S. Osher, “Total Variation Based Image Cartoon-Texture Decomposition,” In 3nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, Beijing, China, 2005.Google Scholar
  47. 47.
    B. Zalesky, “Network Flow Optimization for Restoration of Images,” Journal of Applied Mathematics, Vol. 2, No. 4, pp. 199–218, 2002.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.EPITA Research and Development Laboratory (LRDE)Le Kremlin-BicêtreFrance
  2. 2.École Nationale Supérieure des Télécommunications (ENST)ParisFrance
  3. 3.École Nationale Supérieure des Télécommunications (ENST) / LTCI CNRS UMR 5141ParisFrance

Personalised recommendations