Journal of Mathematical Imaging and Vision

, Volume 27, Issue 3, pp 217–229 | Cite as

Anisotropic Curvature Motion for Structure Enhancing Smoothing of 3D MR Angiography Data

  • Oliver Nemitz
  • Martin Rumpf
  • Tolga Tasdizen
  • Ross Whitaker
Article

Abstract

We propose a novel concept of shape prior for the processing of tubular structures in 3D images. It is based on the notion of an anisotropic area energy and the corresponding geometric gradient flow. The anisotropic area functional incorporates a locally adapted template as a shape prior for tubular vessel structures consisting of elongated, ellipsoidal shape models. The gradient flow for this functional leads to an anisotropic curvature motion model, where the evolution is driven locally in direction of the considered template. The problem is formulated in a level set framework, and a stable and robust method for the identification of the local prior is presented. The resulting algorithm is able to smooth the vessels, pushing solution toward elongated cylinders with round cross sections, while bridging gaps in the underlying raw data. The implementation includes a finite-element scheme for numerical accuracy and a narrow band strategy for computational efficiency.

Keywords

anisotropic mean curvature motion denoising and reconstruction local classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Adalsteinsson and J.A. Sethian, “A fast level set method for propagating interfaces,” Journal of Computational Physics, Vol. 118, No. 2, pp. 269–277, 1995.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    L. Ambrosio and H.M. Soner, “Level set approach to mean curvature flow in arbitrary codimension,” J. Diff. Geom., Vol. 43, pp. 693–737, 1996.MATHMathSciNetGoogle Scholar
  3. 3.
    B. Andrews, “Volume-preserving anisotropic mean curvature flow,” Indiana University Mathematics Journal, Vol. 50, pp. 783–827, 1991.Google Scholar
  4. 4.
    E. Bullit, A. Aylward, A. Liu, S. Mukherji, J. Stone, C. Coffey, G. Gerig, and S.M. Pizer, “3d graph description of the intracerebral vasculature from segmented mra and test of accuracy by comparison with X-ray angiograms,” in: Information Processing in Medical Imaging (IPMI), 1999 pp. 308–321.Google Scholar
  5. 5.
    A. Chung and J. Noble, “Statistical 3d vessel segmentation using a rician distribution,” in Proc. Medical Image Conference and Computer Assisted Interventions (MICCAI), 1999, pp. 82–89.Google Scholar
  6. 6.
    U. Clarenz, G. Dziuk, and M. Rumpf, “On generalized mean curvature flow in surface processing,” in Geometric Analysis and Nonlinear Partial Differential Equations, H. Karcher, S. Hildebrandt (Eds.), Springer, 2003, pp. 217–248.Google Scholar
  7. 7.
    U. Clarenz, M. Rumpf, and A. Telea, “Robust feature detection and local classification for surfaces based on moment analysis,” IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 5, pp. 516–524, 2004.CrossRefGoogle Scholar
  8. 8.
    K. Deckelnick and G. Dziuk, “A fully discrete numerical scheme for weighted mean curvature flow,” Numerische Mathematik, Vol. 91, No. 3, pp. 423–452, 2002.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Droske and M. Rumpf, “A level set formulation for willmore flow,” Interfaces and Free Boundaries, Vol. 6, No. 3, pp. 361–378, 2004.MATHMathSciNetGoogle Scholar
  10. 10.
    L.C. Evans and J. Spruck, “Motion of level sets by mean curvature I,” J. Diff. Geom., Vol. 33, No. 3, pp. 635–681, 1991.MATHMathSciNetGoogle Scholar
  11. 11.
    M.T. Figueiredo and J.M.N. Leitao, “A nonsmoothing approach to the estimation of vessel contours in angiograms,” IEEE Trans. on Medical Imaging, Vol. 14, pp. 162 – 172, 1995.CrossRefGoogle Scholar
  12. 12.
    A. Frangi, W.J. Niessen, K.L. Vincken, and M.A. Viergever, Vessel enhancement filterin,” in Proc. Medical Image Conference and Computer Assisted Interventions (MICCAI), 1998, pp. 130–137.Google Scholar
  13. 13.
    M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Computer Vis., Vol. 1, No. 4, pp. 321–331, 1988.CrossRefGoogle Scholar
  14. 14.
    A.K. Klein, F. Lee, and A.A. Amini, “Quantitative coronary angiography with deformable spline models,” IEEE Trans. on Medical Imaging, Vol. 16, pp. 468–482, 1997.CrossRefGoogle Scholar
  15. 15.
    K. Krissian, “Flux-based anisotropic diffusion applied to enhancement of 3d angiograms,” IEEE Trans. on Medical Imaging, Vol. 21, pp. 1440–1442, 2002.CrossRefGoogle Scholar
  16. 16.
    K. Krissian, G. Malandain, and N. Ayache, “Directional anisotropic diffusion applied to segmentation of vessels in 3d images,” in Proc. Int’l Conf. Scale-Space, 1997, pp. 345–348.Google Scholar
  17. 17.
    K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset, “Model based detection of tubular structures in 3d images,” Computer Vision and Image Understanding, Vol. 80, pp. 130–171, 2000.MATHCrossRefGoogle Scholar
  18. 18.
    L. Lorigo, O. Faugeras, W. Grimson, R. Keriven, R. Kikinis, A. Nabavi, and C. Westin, “Codimension-two geodesic active contours for the segmentation of tubular structures,” in CVPR’2000, CVPR, 2000, pp 444–451.Google Scholar
  19. 19.
    T. Preußer and M. Rumpf, “A level set method for anisotropic geometric diffusion in 3D image processing,” SIAM J. Appl. Math., Vol. 62, No. 5, pp. 1772–1793, 2002.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    V. Prinet, O. Monga, C. Ge, L. Sheng, and S. Ma, “Thin network extraction in 3d images: Application to medical angiograms,” in: Int. Conf. on Pattern Recognition, 1996 pp. 386–390.Google Scholar
  21. 21.
    Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis, “3d multi-scale line filter for segmentation and visualization of curvilinear structures in medical images,” IEEE Med. Image Anal., Vol. 2, pp. 143–168, 1998.CrossRefGoogle Scholar
  22. 22.
    J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999.Google Scholar
  23. 23.
    R. Whitaker, “Volumetric deformable models: active blobs,” in: Visualization in Biomedical Computing, 1994 pp 122–134.Google Scholar
  24. 24.
    G. Wulff, “Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen,” Zeitschrift der Kristallographie, Vol. 34, pp. 449–530, 1901.Google Scholar
  25. 25.
    Y. Sun, R.J. Lucariello, and S.A. Chiaramida, “Directionsal low-pass filtering for improved accuracy and reproducibility of stenosis quantification in coronary arteriograms,” IEEE Trans. Med. Imaging, Vol. 14, pp. 242–248, 1995.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Oliver Nemitz
    • 1
  • Martin Rumpf
    • 1
  • Tolga Tasdizen
    • 2
  • Ross Whitaker
    • 2
  1. 1.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.3450 Merrill Engineering Building, School of ComputingUniversity of UtahSalt Lake City

Personalised recommendations