The Viscous Watershed Transform

  • Corinne VachierEmail author
  • Fernand MeyerEmail author


The watershed transform is the basic morphological tool for image segmentation. Watershed lines, also called divide lines, are a topographical concept: a drop of water falling on a topographical surface follows a steepest descent line until it stops when reaching a regional minimum. Falling on a divide line, the same drop of water may glide towards one or the other of both adjacent catchment basins. For segmenting an image, one takes as topographic surface the modulus of its gradient: the associated watershed lines will follow the contour lines in the initial image. The trajectory of a drop of water is disturbed if the relief is not smooth: it is undefined for instance on plateaus. On the other hand, each regional minimum of the gradient image is the attraction point of a catchment basin. As gradient images generally present many minima, the result is a strong oversegmentation. For these reasons a more robust scheme is used for the construction of the watershed based on flooding: a set of sources are defined, pouring water in such a way that the altitude of the water increases with constant speed. As the flooding proceeds, the boundaries of the lakes propagate in the direction of the steepest descent line of the gradient. The set of points where lakes created by two distinct sources meet are the contours. As the sources are far less numerous than the minima, there is no more oversegmentation. And on the plateaus the flooding also is well defined and propagates from the boundary towards the inside of the plateau. Used in conjunction with markers, the watershed is a powerful, fast and robust segmentation method. Powerful: it has been used with success in a variety of applications. Robust: it is insensitive to the precise placement or shape of the markers. Fast: efficient algorithms are able to mimic the progression of the flood. In some cases however the resulting segmentation will be poor: the contours always belong to the watershed lines of the gradient and these lines are poorly defined when the initial image is blurred or extremely noisy. In such cases, an additional regularization has to take place. Denoising and filtering the image before constructing the gradient is a widely used method. It is however not always sufficient. In some cases, one desires smoothing the contour, despite the chaotic fluctuations of the watershed lines. For this two options are possible. The first consists in using a viscous fluid for the flooding: a viscous fluid will not be able to follow all irregularities of the relief and produce lakes with smooth boundaries. Simulating a viscous fluid is however computationally intensive. For this reason we propose an alternative solution, in which the topographic surface is modified in such a way that flooding it with a non viscous fluid will produce the same lakes as flooding the original relief with a viscous fluid. On this new relief, the standard watershed algorithm can be used, which has been optimized for various architectures. Two types of viscous fluids will be presented, yielding two distinct regularization methods. We will illustrate the method on various examples.


image segmentation watershed transform viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Beucher, “Watershed, hierarchical segmentation and waterfall algorithm”inISMM’94: Mathematical Morphology and its Applications to Image Processing, Sept. 1994.Google Scholar
  2. 2.
    S. Beucher and C. Lantuéjoul, “Use of watersheds in contour detection” inProc. Int. Workshop on Image Processing, Rennes(France), Sept. 1979, pp. 17–21.Google Scholar
  3. 3.
    S. Beucher and F. Meyer, “The morphological approach to segmentation: The watershed transformation” inMathematical Morphology in Image Processing, 1993, pp. 433–481.Google Scholar
  4. 4.
    V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contour”International Journal of Computer Vision, Vol. 22, pp. 61–79, 1997.Google Scholar
  5. 5.
    L. Cohen, “On active contour models and balloons”Computer Vision Graphics Image Processing: Image Understanding, Vol. 53, pp. 211–218, 1991.Google Scholar
  6. 6.
    L. Cohen, “Minimal paths and deformable models for image analysis”Actes des journées d’études SEE: le traitement d’image l’aube du XXIième siècle, Mars 2002.Google Scholar
  7. 7.
    E. Deléchelle and J. Lemoine, “La trajectoire déformable: un modèle optique des contours géodésiques fondé sur le principe de fermat”VI’99, Trois-Rivières, Québec, Canada, Mai, 1999.Google Scholar
  8. 8.
    T. Grigorishin and Y. Yang, “Image segmentation: an electrostatic field based approach”Vision interface’98, Vancouver, 1998, pp. 279–286.Google Scholar
  9. 9.
    M. Grimaud, “New measure of contrast: Dynamics” inImage Algebra and Morphological Processing III,Proc. SPIE, San Diego, CA, 1992.Google Scholar
  10. 10.
    H.M. Worring and R.V. den Boomgaard, “Watersnakes: Energy driven watershed segmentation” Technical Report 12, Intelligent Sensory Information Systems Group, University of Amsterdam, Oct. 2000.Google Scholar
  11. 11.
    M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models”Int. J. Computer Vision, Vol. 1, No. 4, pp. 321–331, 1988.Google Scholar
  12. 12.
    J.-C. Klein, F. Lemonnier, M. Gauthier, and R. Peyrard, “Hardware implementation of the watershed zone algorithm based on a hierarchical queue structure” inProc. IEEE Workshop on Nonlinear Signal and Image Processing, Neos Marmaras, Halkidiki, Greece, 1995, pp. 859–862.Google Scholar
  13. 13.
    B. Marcotegui, “Segmentation de squences d’images en vue du codage” PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 1996.Google Scholar
  14. 14.
    G. Matheron,Eléments pour une Théorie des Milieux Poreux, Masson, Paris, 1967.Google Scholar
  15. 15.
    F. Meyer, “Un algorithme optimal de lignes de partage des eaux” 8me congrès RFIA, Lyon-Villeurbanne, 1991, pp. 847–857.Google Scholar
  16. 16.
    F. Meyer, “Inondation par des fluides visqueux” Technical Report Note interne CMM, Ecole des Mines de Paris, 1993.Google Scholar
  17. 17.
    F. Meyer, “Topographic distance and watershed lines”Signal Processing, 1994, pp. 113–125.Google Scholar
  18. 18.
    F. Meyer, “An overview of morphological segmentation”International Journal of Pattern Recognition and Artificial Intelligence, Vol. 17, No. 7, pp. 1089–1118, 2001.Google Scholar
  19. 19.
    F. Meyer and S. Beucher, “Morphological segmentation”Journal of Visual Communication and Image Representation, Vol. 11, No. 1, pp. 21–46, 1990.Google Scholar
  20. 20.
    F. Meyer and P. Maragos, “Morphological scale-space representation with levelings”Scale-Space’99, LNCS, 1999, pp. 187–198.Google Scholar
  21. 21.
    F. Meyer, A. Oliveras, P. Salembier, and C. Vachier, “Morphological tools for segmentations: Connected filters and watershed”Annals of Telecommunications, 1997.Google Scholar
  22. 22.
    F. Meyer and C. Vachier, “Image segmentation based on viscous flooding simulation” inProceedings of ISMM’02, H. Talbot and R. Bear (Eds.), CSIRO, Sydney, 2002, pp. 69–77.Google Scholar
  23. 23.
    L. Najman and M. Schmitt, “Watershed for a continuous function”Signal Processing, Juil 1994, pp. 99–112.Google Scholar
  24. 24.
    J. Roerdink and A. Meijster, “The watershed transform: Definitions, algorithms and parallelization strategies”Fundamenta Informaticae, Vol 41, pp. 187–228, 2001.Google Scholar
  25. 25.
    P. Salembier, “Morphological multiscale segmentation for image coding”Signal Processing, Vol. 38, No. 3, pp. 359–386, 1994.Google Scholar
  26. 26.
    M. Schmitt and F. Prêteux, “Un nouvel algorithme en morphologie mathématique: Les r-h maxima et r-h minima” inProc. 2ieme Semaine Internationale de l’Image Electronique, Avr, 1986, pp. 469–475.Google Scholar
  27. 27.
    J. Serra, “Viscous lattices” inProc. of ISMM’02, Sydney, H. Talbot and R. Bear (Eds), CSIRO, 2002, pp. 79–90.Google Scholar
  28. 28.
    J. Sethian,Level Set Methods (Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science), Cambridge University Press, 1996.Google Scholar
  29. 29.
    C. Vachier,Extraction de caractéristiques, segmentation d’image et morphologie mathématique, PhD thesis, Ecole des Mines de Paris, Dec 1995.Google Scholar
  30. 30.
    C. Vachier, “Extraction de caractéristiques par analyse morphologique multi-échelle” inProc. of GRETSI, Toulouse, Vol. 1, Sept. 2001.Google Scholar
  31. 31.
    C. Vachier and F. Meyer, “Extinction value: A new measurement of persistence” inProc. of 1995 IEEE Workshop on Nonlinear Signal and Image Processing, Vol. I, Juin 1995, pp. 254–257.Google Scholar
  32. 32.
    C. Vachier and L. Vincent, “Valuation of image extrema using alternating filters by reconstruction”Image Algebra and Morphological Processing,Proc. SPIE, San Diego, CA, Juil 1995.Google Scholar
  33. 33.
    L. Vincent,Algorithmes morphologiques àbase de files d’attente et de lacets. Extension aux graphes, PhD thesis, Ecole des Mines de Paris, Mai 1990.Google Scholar
  34. 34.
    L. Vincent and P. Soille, “Watersheds in digital space and efficient algorithm based on immersion simulations”IEEE Transactions on PAMI, Vol. 13, No. 6, pp. 583–598, 1991.Google Scholar
  35. 35.
    C. Xu and J.L. Prince, “Snakes, shapes and gradient vector flow”IEEE Transactions on Image Processing, Vol. 7, No. 3, pp. 359–369, 1998.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Centre de Mathé matiques et Leurs ApplicationsEcole Normale Supérieure de CachanCachanFrance
  2. 2.Centre de Morphologie MathématiqueEcole Nationale Supérieure des Mines de ParisFontainebleauFrance

Personalised recommendations