1.

G. Bertrand, “On topological watersheds”

*Journal of Mathematical Imaging and Vision*, Vol. 22, Nos. 2/3, pp. ??–??, 2005.

Google Scholar2.

G. Bertrand, J.C. Everat, and M. Couprie, “Image segmentation through operators based upon topology”

*Journal of Electronic Imaging*, Vol. 6, No. 4, pp. 395-405, 1997.

Google Scholar3.

S. Beucher and Ch. Lantuéjoul, “Use of watersheds in contour detection” in*Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation*, Rennes, France, 1979.

4.

S. Beucher and F. Meyer, “The morphological approach to segmentation: The watershed transformation” in*Mathematical Morphology in Image Processing*, Dougherty (Ed.), Chap. 12, Marcel Dekker, 1993, pp. 433–481.

5.

M.A. Bender and M. Farach-Colton, “The LCA problem revisited” in*Proc. 4th Latin American Symposium on Theoretical Informatics*, LNCS, Springer, Vol. 1776, 2000, pp. 88–94.

6.

U.M. Braga-Neto and J. Goutsias, “A theoretical tour of connectivity in image processing and analysis”

*Journal of Mathematical Imaging and Vision*, Vol. 19, pp. 5–31, 2003.

Google Scholar7.

E.J. Breen and R. Jones, “Attribute openings, thinnings and granulometries”

*Computer Vision and Image Understanding*, Vol. 64, No. 3, pp. 377–389, 1996.

Google Scholar8.

T. H. Cormen, C. Leiserson, and R. Rivest,*Introduction to Algorithms*, McGraw-Hill, 1990.

9.

M. Couprie and G. Bertrand, “Topological grayscale watershed transformation” in

*Proc. SPIE Vision Geometry VI*, Vol. 3168, 1997, pp. 136–146.

Google Scholar10.

M. Couprie, F.N. Bezerra, and G. Bertrand, “Topological operators for grayscale image processing”

*Journal of Electronic Imaging*, Vol. 10, No. 4, pp. 1003–1015, 2001.

Google Scholar11.

V. Goetcherian, “From binary to grey tone image processing using fuzzy logic concepts”

*Pattern Recognition*, Vol. 12, No. 12, pp. 7–15, 1980.

Google Scholar12.

P. Guillataud, “Contribution á l’analyse dendroniques des images” PhD thesis of Université de Bordeaux I, 1992.

13.

P. Hanusse and P. Guillataud, “Sémantique des images par analyse dendronique” in*8th Conf. Reconnaissance des Formes et Intelligence Artificielle*, AFCET Ed., Lyon, Vol. 2, 1992, pp. 577–588.

14.

J.A. Hartigan, “Statistical theory in clustering”*Journal of classification*, No. 2, pp. 63–76, 1985.

15.

D. Harel and R.E. Tarjan, “Fast algorithms for finding nearest common ancestors”

*SIAM J. Comput.*, Vol. 13, No. 2, pp. 338–355, 1984.

Google Scholar16.

R. Jones, “Connected filtering and segmentation using component trees”

*Computer Vision and Image Understanding*, Vol. 75, No. 3, pp. 215–228, 1999.

Google Scholar17.

T.Y Kong and A. Rosenfeld, “Digital topology: Introduction and survey”

*Computer Vision, Graphics and Image Processing*, Vol. 48, pp. 357–393, 1989.

Google Scholar18.

J. Mattes and J. Demongeot, “Tree representation and implicit tree matching for a coarse to fine image matching algorithm” in*Proc. MICCAI, LNCS*, Springer, Vol. 1679, 1999, pp. 646–655.

19.

J. Mattes and J. Demongeot, “Efficient algorithms to implement the confinement tree” in*Proc. DGCI, LNCS*, Springer, Vol. 1953, 2000, pp. 392–405.

20.

J. Mattes, M. Richard, and J. Demongeot, “Tree representation for image matching and object recognition” in*Proc. DGCI, LNCS*, Springer, Vol. 1568, 1999, pp. 298–309.

21.

A. Meijster and M. Wilkinson, “A comparison of algorithms for connected set openings and closings”

*IEEE PAMI*, Vol. 24, pp. 484–494, 2002.

Google Scholar22.

F. Meyer, “Un algorithme optimal de ligne de partage des eaux” in*Proc. 8th Conf. Reconnaissance des Formes et Intelligence Artificielle*, AFCET Ed., Lyon, Vol. 2, 1991, pp. 847–859.

23.

L. Najman and M. Couprie, “Watershed algorithms and contrast preservation” in*Proc. DGCI, LNCS*, Springer, Vol. 2886, 2003, pp. 62–71.

24.

L. Najman and M. Couprie, “Quasi-linear algorithm for the component tree” in

*Proc. SPIE Vision Geometry XII*, Vol. 5300, 2004, pp. 98–107.

Google Scholar25.

L. Najman, M. Couprie, and G. Bertrand, “Watersheds, mosaics, and the emergence paradigm” to appear in*Discrete Applied Mathematics*, 2005.

26.

L. Najman and M. Schmitt, “Watershed of a continuous function”

*Signal Processing*, Vol. 38, pp. 99–112, 1994.

Google Scholar27.

J.B.T.M. Roerdink and A. Meijster, “The watershed transform: Definitions, algorithms and parallelization strategies”

*Fundamenta Informaticae*, Vol. 41, pp. 187–228, 2000.

Google Scholar28.

A. Rosenfeld, “On connectivity properties of grayscale pictures”

*Pattern Recognition*, Vol. 16, pp. 47–50, 1983.

Google Scholar29.

J. Serra,*Image Analysis and Mathematical Morphology*, Vol. II:*Theoretical Advances*, Academic Press, 1988.

30.

P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive connected operators for image and sequence processing”

*IEEE Trans. on Image Processing*, Vol. 7, No. 4, pp. 555–570, 1998.

Google Scholar31.

R.E. Tarjan, “Disjoint sets”*Data Structures and Network Algorithms*, Chap. 2, SIAM, 1978, pp. 23–31.

32.

M. Thorup, “On RAM priority queues” in*7th ACM-SIAM Symposium on Discrete Algorithms*, 1996, pp. 59–67.

33.

C. Vachier, “Extraction de caractéristiques, segmentation d’images et Morphologie Mathématique” PhD Thesis, École des Mines, Paris, 1995.

34.

L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations”

*IEEE Trans. on Pattern Analysis and Machine Intelligence*, Vol. 13, No. 6, pp. 583–598, 1991.

Google Scholar35.

D. Wishart, “Mode analysis: A generalization of the nearest neighbor which reduces chaining effects” in*Numerical Taxonomy*, A.J. Cole (Ed.), Academic Press, 1969, pp. 282–319.