Journal of Mathematical Imaging and Vision

, Volume 22, Issue 1, pp 71–88 | Cite as

Image Decomposition into a Bounded Variation Component and an Oscillating Component

  • Jean-François Aujol
  • Gilles Aubert
  • Laure Blanc-Féraud
  • Antonin Chambolle
Article

Abstract

We construct an algorithm to split an image into a sum u + v of a bounded variation component and a component containing the textures and the noise. This decomposition is inspired from a recent work of Y. Meyer. We find this decomposition by minimizing a convex functional which depends on the two variables u and v, alternately in each variable. Each minimization is based on a projection algorithm to minimize the total variation. We carry out the mathematical study of our method. We present some numerical results. In particular, we show how the u component can be used in nontextured SAR image restoration.

Keywords

total variation minimization BV texture restoration SAR images speckle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Alvarez, Y. Gousseau, and J.M. Morel, “Scales in natural images and a consequence on their bounded variation norm,” in Scale-Space ‘99, volume 1682 of Lecture Notes in Computer Science, 1999.Google Scholar
  2. 2.
    J.F. Aujol, G. Aubert, L. Blanc-Féraud, and Antonin Chambolle, “Decomposing an image: Application to textured images and sar images,” 2003. INRIA Research Report 4704.Google Scholar
  3. 3.
    A. Chambolle, “An algorithm for total variation minimization and applications,” JMIV, Vol. 20, p. 89, 2004.Google Scholar
  4. 4.
    A. Chambolle and P.L. Lions, “Image recovery via total variation minimization and related problems,” Numerische Mathematik, Vol. 76, No. 3, pp. 167–188, 1997.Google Scholar
  5. 5.
    I. Ekeland and R. Temam, “Analyse convexe et problemes variationnels,” Grundlehren der mathematischen Wissenschaften, 2nd edn, Dunod, Vol. 224, 1983.Google Scholar
  6. 6.
    J.B. Hiriart-Urruty and C. Lemarechal, “Convex analysis ans minimisation algorithms I,” Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Vol. 305, 1993.Google Scholar
  7. 7.
    Henderson Lewis, “Principle and applications of Imaging Radar,” Manual of Remote Sensing, 3rd edn., J. Wiley and Sons, Vol. 2, 1998.Google Scholar
  8. 8.
    Yves Meyer, “Oscillating patterns in image processing and in some nonlinear evolution equations,” The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, March 2001.Google Scholar
  9. 9.
    S.J. Osher, A. Sole, and L.A. Vese, “Image decomposition and restoration using total variation minimization and the H−1 norm,” SIAM Journal on Multiscale Modeling and Simulation, Vol. 1, No. 3, pp. 349–370, 2002.Google Scholar
  10. 10.
    T. Rockafellar, “Convex analysis,” Etudes Mathematiques Princeton University Press, 1974.Google Scholar
  11. 11.
    L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, vol. 60, pp. 259–268, 1992.CrossRefGoogle Scholar
  12. 12.
    Luminita A. Vese and Stanley J. Osher, “Modeling textures with total variation minimization and oscillating patterns in image processing,” Journal of Scientific Computing, Vol. 15, pp. 553–572, 2003.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jean-François Aujol
    • 1
    • 2
    • 6
  • Gilles Aubert
    • 3
  • Laure Blanc-Féraud
    • 4
  • Antonin Chambolle
    • 5
  1. 1.Laboratoire J.A. Dieudonné, UMR CNRS 6621Université de Nice Sophia-AntipolisNice Cedex 2France
  2. 2.ARIANA, Projet Commun CNRS/INRIA/UNSAINRIA Sophia AntipolisSophia Antipolis CedexFrance
  3. 3.Laboratoire J.A. Dieudonné, UMR CNRS 6621Université de Nice Sophia-AntipolisNice Cedex 2France
  4. 4.ARIANA, Projet Commun CNRS/INRIA/UNSAINRIA Sophia AntipolisSophia Antipolis CedexFrance
  5. 5.CEREMADE, UMR CNRS 7534Université Paris - DauphineParis Cedex 16France
  6. 6.UCLA Department of MathematicsLos Angeles

Personalised recommendations