Advertisement

Formalizing GDPR Provisions in Reified I/O Logic: The DAPRECO Knowledge Base

  • Livio RobaldoEmail author
  • Cesare Bartolini
  • Monica Palmirani
  • Arianna Rossi
  • Michele Martoni
  • Gabriele Lenzini
Article

Abstract

The DAPRECO knowledge base is the main outcome of the interdisciplinary project bearing the same name (https://www.fnr.lu/projects/data-protection-regulation-compliance). It is a repository of rules written in LegalRuleML, an XML formalism designed to be a standard for representing the semantic and logical content of legal documents. The rules represent the provisions of the General Data Protection Regulation (GDPR), the new Regulation that is significantly affecting the digital market in the European Union and beyond. The DAPRECO knowledge base builds upon the Privacy Ontology (PrOnto) (Palmirani et al in Proceedings of the 7th international conference on electronic government and the information systems perspective: technology-enabled innovation for democracy, government and governance, 2018c), which provides a model for the legal concepts involved in the GDPR, by adding a further layer of constraints in the form of if-then rules, referring either to standard first order logic implications or to deontic statements. If-then rules are formalized in reified Input/Output logic (Robaldo and Sun in J Log Comput 7, 2017) and then codified in LegalRuleML. Reified Input/Output logic is an application of standard Input/Output logic for legal reasoning, in which Input/Output logic is combined with the reification-based approach in Hobbs and Gordon (A formal theory of commonsense psychology, how people think people think. Cambridge University Press, Cambridge, 2017). The DAPRECO knowledge base is then a case study for reified Input/Output logic, and it shows that the formalism indeed appears to be a good candidate to effectively formalize, via uniform and simple (flat) representations, complex linguistic/deontic phenomena that may be found in legal texts. To date, the DAPRECO knowledge base is the biggest knowledge base in LegalRuleML and Input/Output logic freely available online (https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml).

Keywords

Deontic logic Reification Legal Informatics 

Notes

References

  1. Ajani, G., Boella, G., Di Caro, L., Robaldo, L., Humphreys, L., Praduroux, S., et al. (2017). The European legal taxonomy syllabus: A multi-lingual, multi-level ontology framework to untangle the Web of European legal terminology. Applied Ontology, 2(4).Google Scholar
  2. Amgoud, L., & Nouioua, F. (2015). Undercutting in argumentation systems. In C. Beierle & A. Dekhtyar, (Eds.), Scalable uncertainty management - 9th international conference, SUM 2015, Québec City, QC, Canada, September 16–18, 2015. Proceedings, volume 9310 of Lecture Notes in Computer Science (pp. 267–281). Berlin: Springer.Google Scholar
  3. Antoniou, G., Billington, D., Governatori, G., & Maher, M. J. (2001). Representation results for defeasible logic. ACM Transactions on Computational Logic, 2(2), 255–287.CrossRefGoogle Scholar
  4. Arner, D. W., Barberis, J., & Buckey, R. P. (2016). FinTech, RegTech, and the reconceptualization of financial regulation. Northwestern Journal of International Law & Business, 37, 371–414.Google Scholar
  5. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., & Wyner, A. (2013). LegalRuleML: From metamodel to use cases (pp. 13–18). Berlin: Springer.Google Scholar
  6. Athan, T., Governatori, G., Palmirani, M., Paschke, A., & Wyner, A. Z. (2014). Legal interpretations in legalruleml. In Semantic Web for Law 2014 workshop, collocated at the 27th international conference on legal knowledge and information systems (JURIX 2014), CEUR workshop proceedings.Google Scholar
  7. Athan, T., Governatori, G., Palmirani, M., Paschke, A., & Wyner, A. (2015). LegalRuleML: Design principles and foundations (pp. 151–188). Berlin: Springer.Google Scholar
  8. Bach, E. (1981). On time, tense, and aspect: An essay in English metaphysics. In P. Cole (Ed.), Radical pragmatics (pp. 63–81). New York: Academic Press.Google Scholar
  9. Bandeira, J., Bittencourt, I. I., Espinheira, P., & Isotani, S. (2016). FOCA: A methodology for ontology evaluation. https://arxiv.org/abs/1612.03353.
  10. Bartolini, C., Giurgiu, A., Lenzini, G., & Robaldo, L.. (2016). Towards legal compliance by correlating standards and laws with a semi-automated methodology. In BNCAI, volume 765 of Communications in Computer and Information Science (pp. 47–62). Berlin: Springer.Google Scholar
  11. Bochman, A. (2004). A causal approach to nonmonotonic reasoning. Artificial Intelligence, 160(1–2), 105–143.CrossRefGoogle Scholar
  12. Boella, G., Di Caro, L., Humphreys, L., Robaldo, L., Rossi, R., & van der Torre, L. (2016). Eunomos, a legal document and knowledge management system for the web to provide relevant, reliable and up-to-date information on the law. Artificial Intelligence and Law, 24, 245.CrossRefGoogle Scholar
  13. Boella, G., di Caro, L., Humphreys, L., Robaldo, L., & van der Torre, L. (2012). NLP challenges for Eunomos, a tool to build and manage legal knowledge. In Proceeding of “Lexical Resources and Evaluation Conference” (LREC2012). Istanbul, Turchia. https://www.aclweb.org/anthology/L12-1617/.
  14. Boella, G., Di Caro, L., Rispoli, D., & Robaldo, L. (2013a). Semantic relation extraction from legislative text using generalized syntactic dependencies and support vector machines (pp. 218–225). Berlin: Springer.Google Scholar
  15. Boella, G., Di Caro, L., Rispoli, D., & Robaldo, L. (2013b) A system for classifying multi-label text into Eurovoc. In Proceedings of the fourteenth international conference on artificial intelligence and law, ICAIL ’13 (pp. 239–240). ACM, New York, NY, USA.Google Scholar
  16. Boella, G., Governatori, G., Rotolo, A., & van der Torre, L. (2010). Lex Minus Dixit Quam Voluit, Lex Magis Dixit Quam Voluit: A formal study on legal compliance and interpretation (pp. 162–183). Berlin: Springer.Google Scholar
  17. Boella, G., & van der Torre, L. W. N. (2004a). Fulfilling or violating obligations in normative multiagent systems. IEEE/WIC/ACM international conference on intelligent agent technology (IAT 2004) (pp. 483–486), Beijing, China.Google Scholar
  18. Boella, G., & van der Torre, L. W. N. (2004b) Regulative and constitutive norms in normative multiagent systems. In Principles of knowledge representation and reasoning: Proceedings of the ninth international conference (KR2004) (pp. 255–266).Google Scholar
  19. Bonatti, P. A., Lutz, C., & Wolter, F. (2009). The complexity of circumscription in description logic. Journal of Artificial Intelligence Research, 35(1), 717–773.CrossRefGoogle Scholar
  20. Brank, J., Grobelnik, M., & Mladenić, D. (2005). A survey of ontology evaluation techniques. In Proceedings of 8th international multi-conference information society.Google Scholar
  21. Brozek, B. (2014). Law and defeasibility. Revus, 23, 165–170.Google Scholar
  22. Cadoli, M., & Lenzerini, M. (1994). The complexity of propositional closed world reasoning and circumscription. Journal of Computer and System Sciences, 48(2), 255–310.CrossRefGoogle Scholar
  23. Casellas, N. (2009). Ontology evaluation through usability measures. In R. Meersman, P. Herrero, & T. Dillon (Eds.), On the move to meaningful internet systems: OTM 2009 workshops. Berlin: Springer.Google Scholar
  24. Casini, G., Meyer, T., Moodley, K., Sattler, U., & Varzinczak, I. (2015). Introducing defeasibility into owl ontologies. In R. Meersman, P. Herrero, & T. Dillon (Eds.), Proceedings of international semantic Web conference (ISWC).Google Scholar
  25. Davidson, D. (1967). The logical form of action sentences. In N. Rescher (Ed.), The logic of decision and action. Pittsburgh: University of Pittsburgh Press.Google Scholar
  26. Dimyadi, J., Governatori, G., & Amor, R.. (2017). Evaluating legaldocml and legalruleml as a standard for sharing normative information in the aec/fm domain. In Proceedings of joint conference on computing in construction (JC3), Vol. 1, Heraklion, Greece.Google Scholar
  27. Galton, A. (2006). Operators vs. arguments: The ins and outs of reification. Synthese, 150(3), 415–441.CrossRefGoogle Scholar
  28. Governatori, G. (2015). Thou shalt is not you will. In Proceedings of the 15th international conference on artificial intelligence and law, ICAIL 2015 (pp. 63–68), ACM, New York, NY, USA.Google Scholar
  29. Governatori, G., & Rotolo, A. (2006) Logic of violation: A Gentzen system for reasoning with contrary-to-duty obligations. Australasian Journal of Logic, (426).Google Scholar
  30. Governatori, G., Padmanabhan, V., Rotolo, A., & Sattar, A. (2009). A defeasible logic for modelling policy-based intentions and motivational attitudes. Logic Journal of the IGPL, 17(3), 227.CrossRefGoogle Scholar
  31. Governatori, G., Olivieri, F., Rotolo, A., & Scannapieco, S. (2013). Computing strong and weak permissions in defeasible logic. Journal of Philosophical Logic, 6(42), 799–829.CrossRefGoogle Scholar
  32. Governatori, G., & Rotolo, A. (2008). Bio logical agents: Norms, beliefs, intentions in defeasible logic. Autonomous Agents and Multi-Agent Systems, 17(1), 36–69.CrossRefGoogle Scholar
  33. Hansen, J. (2008). Prioritized conditional imperatives: Problems and a new proposal. Autonomous Agents and Multi-Agent Systems, 17(1), 11–35.CrossRefGoogle Scholar
  34. Hobbs, J. R. (1998). The logical notation: Ontological promiscuity. In Chapter 2 of discourse and inference. Available at http://www.isi.edu/~hobbs/disinf-tc.html.
  35. Hobbs, J. R. (2001). Syntax and metonymy. In P. Bouillon & F. Busa (Eds.), The Language of word meaning (pp. 302–361). Cambridge: Cambridge University Press.Google Scholar
  36. Hobbs, J. R., & Gordon, A. S. (2017). A formal theory of commonsense psychology, how people think people think. Cambridge: Cambridge University Press.Google Scholar
  37. Horty, J. (2001). Agency and deontic logic. New York: Oxford University Press.CrossRefGoogle Scholar
  38. Horty, J. (2012). Reasons as defaults. Oxford: Oxford University Press.CrossRefGoogle Scholar
  39. Idelberger, F., Governatori, G., Riveret, R., & Sartor, G. (2016). Evaluation of logic-based smart contracts for blockchain systems. In RuleML, volume 9718 of Lecture Notes in Computer Science (pp. 167–183). Berlin: Springer.Google Scholar
  40. Jörg, H. (2014). Reasoning about permission and obligation. In S. O. Hansson (Ed.), David Makinson on classical methods for non-classical problems (Vol. 3, pp. 287–333). Outstanding Contributions to Logic. Berlin: Springer.Google Scholar
  41. Jørgensen, J. (1937). Imperatives and logic. Erkenntnis, 7, 288–296.Google Scholar
  42. MacCormick, N., & Summers, R. S. (1991). Interpreting statutes: A comparative study. Applied legal philosophy. Hanover: Dartmouth.Google Scholar
  43. Makinson, D. & van der Torre, L. (2003b). What is input/output logic? In B. Lowe, W. Malzkorn, & T. Rasch (Eds.), Foundations of the formal sciences II: Applications of mathematical logic in philosophy and linguistics (pp. 163–174).Google Scholar
  44. Makinson, D., & van der Torre, L. W. N. (2000). Input/output logics. Journal of Philosophical Logic, 29(4), 383–408.CrossRefGoogle Scholar
  45. Makinson, D., & van der Torre, L. (2001). Constraints for input/output logics. Journal of Philosophical Logic, 30(2), 155–185.CrossRefGoogle Scholar
  46. Makinson, D., & van der Torre, L. (2003a). Permission from an input/output perspective. Journal of Philosophical Logic, 32, 391–416.CrossRefGoogle Scholar
  47. Malerba, A. (2017). Interpretive interactions among Legal systems and argumentation schemes. Ph.D. thesis, Joint International Doctoral (Ph.D.) Degree in Law, Science and Technology (LAST-JD).Google Scholar
  48. Maranhão, J. S. A. (2017). A logical architecture for dynamic legal interpretation. In Proceedings of the 16th Edition of the international conference on articial intelligence and law, ICAIL ’17 (pp. 129–138). ACM, New York, NY, USA.Google Scholar
  49. Maranhão, J., & de Souza, E. G.. (2018) Contraction of combined normative sets. In J. M. Broersen, C. Condoravdi, N. Shyam, & G. Pigozzi (Eds.), Deontic logic and normative systems - 14th international conference, DEON 2018, Utrecht, The Netherlands, July 3–6, 2018 (pp. 247–261). College Publications.Google Scholar
  50. McCarthy, J. (1980). Circumscription: A form of nonmonotonic reasoning. Artificial Intelligence, 13, 27–39.CrossRefGoogle Scholar
  51. Nute, D. (1994b). Defeasible prolog. In AAAI technical report FS-93-0. Oxford: Oxford University Press. Available at https://www.aaai.org/Papers/Symposia/Fall/1993/FS-93-01/FS93-01-015.pdf.
  52. Nute, D. (1994a). Defeasible logic. In D. Gabbay, C. Hogger, & J. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming. Oxford: Oxford University Press.Google Scholar
  53. Nute, D. (1997). Defeasible deontic logic. Dordrecht: Kluwer.CrossRefGoogle Scholar
  54. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., & Robaldo, L. (2018a). Legal ontology for modelling GDPR concepts and norms. In Legal knowledge and information systems - JURIX 2018: The thirty-first annual conference, Groningen, The Netherlands, 12–14 December 2018.Google Scholar
  55. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., & Robaldo, L. (2018b). Pronto: Privacy ontology for legal compliance. In Proceedings of the 18th European conference on digital government (ECDG), October (Forthcoming).Google Scholar
  56. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., & Robaldo, L. (2018c). Pronto: Privacy ontology for legal reasoning. In Proceedings of the 7th international conference on electronic government and the information systems perspective (EGOVIS): Technology-enabled innovation for democracy, government and governance, September (Forthcoming).Google Scholar
  57. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., & Robaldo, L. (2018d). Pronto: Privacy ontology for legal reasoning. In Proceedings of the Internationales Rechtsinformatik Symposion (IRIS), February.Google Scholar
  58. Palmirani, M. (2011). Legislative change management with Akoma-Ntoso (pp. 101–130). Dordrecht: Springer.Google Scholar
  59. Palmirani, M., & Vitali, F. (2011). Akoma Ntoso for legal documents (pp. 75–100). Dordrecht: Springer.Google Scholar
  60. Parent, X., & van der Torre, L. (2018). Input/output logics with a consistency check. In Proceedings of the 14th international conference on deontic logic and normative systems (DEON2018).Google Scholar
  61. Parent, X., & van der Torre, L. (2014a). Aggregative deontic detachment for normative reasoning. In Principles of knowledge representation and reasoning: Proceedings of the fourteenth international conference, KR 2014, Vienna, Austria, July 20–24, 2014.Google Scholar
  62. Parent, X., & van der Torre, L. W. N.. (2017). The pragmatic oddity in norm-based deontic logics. In Proceedings of the 16th edition of the international conference on articial intelligence and law, ICAIL 2017, London, United Kingdom, June 12–16, 2017 (pp. 169–178).Google Scholar
  63. Parent, X. (2011). Moral particularism in the light of deontic logic. Artificial Intelligence and Law, 19(2–3), 75–98.CrossRefGoogle Scholar
  64. Parent, X., & van der Torre, L. (2014). Sing and dance!. In F. Cariani, D. Grossi, J. Meheus, & X. Parent (Eds.), Deontic logic and normative systems (pp. 149–165). Berlin: Springer.CrossRefGoogle Scholar
  65. Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th annual symposium on foundations of computer science, SFCS ’77 (pp. 46–57). IEEE Computer Society.Google Scholar
  66. Prakken, H. (2005). Ai & law, logic and argument schemes. Argumentation, 19(3), 303–320.CrossRefGoogle Scholar
  67. Ramakrishna, S., Gorski, L., & Paschke, A. (2016). A dialogue between a lawyer and computer scientist: The evaluation of knowledge transformation from legal text to computer-readable format. Applied Artificial Intelligence, 30(3),Google Scholar
  68. Reiter, R. (1987). A logic for default reasoning. In M. L. Ginsberg (Ed.), Readings in nonmonotonic reasoning (pp. 68–93). Los Altos, CA: Kaufmann.Google Scholar
  69. Robaldo, L., & Sun, X. (2017). Reified input/output logic: Combining input/output logic and reification to represent norms coming from existing legislation. The Journal of Logic and Computation, 7.Google Scholar
  70. Robaldo, L., Caselli, T., Russo, I., & Grella, M. (2011). From Italian text to TimeML document via dependency parsing. In Computational Linguistics and intelligent text processing - 12th international conference, CICLing 2011, Tokyo, Japan (pp. 177–187).Google Scholar
  71. Robaldo, L. (2010a). Independent set readings and generalized quantifiers. The Journal of Philosophical Logic, 39(1), 23–58.CrossRefGoogle Scholar
  72. Robaldo, L. (2010b). Interpretation and inference with maximal referential terms. The Journal of Computer and System Sciences, 76(5), 373–388.CrossRefGoogle Scholar
  73. Robaldo, L. (2011). Distributivity, collectivity, and cumulativity in terms of (in)dependence and maximality. The Journal of Logic, Language, and Information, 20(2), 233–271.CrossRefGoogle Scholar
  74. Robaldo, L., Szymanik, J., & Meijering, B. (2014). On the identification of quantifiers’ witness sets: A study of multi-quantifier sentences. The Journal of Logic, Language, and Information, 23(1), 53.CrossRefGoogle Scholar
  75. Rotolo, A., Governatori, G., & Sartor, G. (2015). Deontic defeasible reasoning in legal interpretation: Two options for modelling interpretive arguments. In Proceedings of the 15th international conference on artificial intelligence and law (ICAIL). ACM, New York, NY, USA.Google Scholar
  76. Sartor, G. (2005). Legal reasoning: A cognitive approach to the law. Treatise of legal philosophy and general jurisprudence / ed.-in-chief Enrico Pattaro. Berlin: Springer.Google Scholar
  77. Satariano, A. (2018). What the G.D.P.R. Europe’s tough new data law, means for you, and for the Internet. Online article, May.Google Scholar
  78. Schwarzentruber, F., & Caroline, S. (2014). STIT is dangerously undecidable. In T. Schaub, G. Friedrich, & B. O’Sullivan (Eds.), ECAI 2014-21st European conference on artificial intelligence, 18–22 August 2014, Prague, Czech Republic - Including prestigious applications of intelligent systems (PAIS 2014), volume 263 of Frontiers in artificial intelligence and applications. IOS Press.Google Scholar
  79. Searle, J. R. (1995). The construction of social reality. New York: The Free Press.Google Scholar
  80. Sun, X., & Robaldo, L. (2015). Logic and games for ethical agents in normative multi-agent systems. In M. Rovatsos, G. A. Vouros, & V. Julián (Eds.), Multi-agent systems and agreement technologies - 13th European conference, EUMAS 2015, and third international conference, at 2015, Athens, Greece, December 17–18, 2015, Revised Selected Papers, volume 9571 of Lecture Notes in Computer Science (pp. 367–375). Berlin: Springer.Google Scholar
  81. Sun, X., & van der Torre, L. W. N.. (2014). Combining constitutive and regulative norms in input/output logic. In F. Cariani, D. Grossi, J. Meheus, & X. Parent (Eds.), Deontic logic and normative systems - 12th international conference, DEON 2014, Ghent, Belgium, July 12–15, 2014. Proceedings, volume 8554 of Lecture Notes in Computer Science (pp. 241–257). Berlin: Springer.Google Scholar
  82. Sun, X., & Robaldo, L. (2017). On the complexity of input/output logic. The Journal of Applied Logic, 25, 69–88.CrossRefGoogle Scholar
  83. Walton, D., Sartor, G., & Macagno, F. (2016). An argumentation framework for contested cases of statutory interpretation. Artifical Intelligence and Law, 24(1), 51–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Livio Robaldo
    • 1
    Email author
  • Cesare Bartolini
    • 1
  • Monica Palmirani
    • 2
  • Arianna Rossi
    • 1
  • Michele Martoni
    • 2
  • Gabriele Lenzini
    • 1
  1. 1.Interdisciplinary Centre for Security, Reliability and Trust (SnT)University of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.University of Bologna, CIRSFIDBolognaItaly

Personalised recommendations