A History Based Logic for Dynamic Preference Updates

  • Can BaşkentEmail author
  • Guy McCusker


History based models suggest a process-based approach to epistemic and temporal reasoning. In this work, we introduce preferences to history based models. Motivated by game theoretical observations, we discuss how preferences can dynamically be updated in history based models. Following, we consider arrow update logic and event calculus, and give history based models for these logics. This allows us to relate dynamic logics of history based models to a broader framework.


History based models Preference logic Dynamic logic Arrow update logic Product update models 



We acknowledge the input and feedback of David Pym and Gabriella Anderson for the early versions of this work. The work was carried out under the EPSRC project ALPUIS.


  1. Anderson, G., McCusker, G., & Pym, D. (2016). A logic for the compliance budget. In Q. Zhu, T. Alpcan, E. Panaousis, M. Tambe, & W. Casey (Eds.), Proceedings, GameSec 2016—Decision and game theory for security (pp. 370–381).Google Scholar
  2. Baltag, A., Moss, L., & Solecki, S. (1998). The logic of public announcements and common knowledge and private suspicions. In I. Gilboa (Ed.), Proceedings of the 7th conference on theoretical aspects of rationality and knowledge, TARK 98 (pp. 43–56).Google Scholar
  3. Başkent, C. (2011). A logic for strategy updates. In H. van Ditmarsch & J. Lang (Eds.), Proceedings of the third international workshop on logic, rationality and interaction (LORI-3), volume LNCS 6953 (pp. 382–383).Google Scholar
  4. Blackburn, P., de Rijke, M., & de Venema, Y. (2001). Modal logic. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.Google Scholar
  5. Brandenburger, A. (2014). The language of game theory. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  6. Fagin, R., Geanakoplos, J., Halpern, J. Y., & Vardi, M. Y. (1999). The hierarchical approach to modeling knowledge and common knowledge. International Journal of Game Theory, 28, 331–365.CrossRefGoogle Scholar
  7. Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. Cambridge: MIT Press.Google Scholar
  8. Fagin, R., Halpern, J. Y., & Vardi, M. Y. (1991). A model-theoretic analysis of knowledge. Journal of the Association for Computing Machinery, 38(2), 382–428.CrossRefGoogle Scholar
  9. Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many dimensional modal logics: Theory and applications. Amsterdam: Elsevier.Google Scholar
  10. Gerbrandy, J. (1999). Bisimulations on planet Kripke. PhD thesis, Institute of Logic, Language and Computation; Universiteit van Amsterdam.Google Scholar
  11. Halpern, J. Y. (2008). Computer science and game theory: A brief survey. In S. N. Durlauf & L. E. Blume (Eds.), Palgrave dictionary of economics. London: Palgrave MacMillan.Google Scholar
  12. Halpern, J. Y. & Pass, R. (2017). A knowledge-based analysis of the blockchain protocol. In J. Lang (Ed.), Proceedings of the sixteenth conference on theoretical aspects of rationality and knowledge. TARK 2018, EPTCS 251 (pp. 324–335).Google Scholar
  13. Halpern, J. Y., & Vardi, M. Y. (1989). The complexity of reasoning about knowledge and time. I. Lower bounds. Journal of Computer and System Sciences, 38(1), 195–237.CrossRefGoogle Scholar
  14. Halpern, J. Y., Vardi, M. Y., & van der Meyden, R. (2004). Complete axiomatization for reasoning about knowledge and time. SIAM Journal of Computing, 33(2), 674–703.CrossRefGoogle Scholar
  15. Hanson, S. O. (2001). Preference logic. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 4, pp. 319–393). Dordrecht: Kluwer.CrossRefGoogle Scholar
  16. Harsanyi, J. C. (1967). Games with incomplete information played by ‘Bayesian’ players: I. The basic model. Management Science, 14(3), 159–182.CrossRefGoogle Scholar
  17. Hodges, W. (2013) Logic and games. In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy. Retrieved 2009, from
  18. Kooi, B., & Renne, B. (2011). Arrow update logic. The Review of Symbolic Logic, 4(4), 536–559.CrossRefGoogle Scholar
  19. Kurtonina, N., & de Rijke, M. (1997). Bisimulations for temporal logic. Journal of Logic, Language and Information, 6, 403–425.CrossRefGoogle Scholar
  20. Leyton-Brown, K., & Shoham, Y. (2008). Essentials of game theory. San Rafael: Morgan & Claypool.Google Scholar
  21. Lorini, E., & Moisan, F. (2011). An epistemic logic of extensive games. Electronic Notes in Theoretical Computer Science, 278, 245–260.CrossRefGoogle Scholar
  22. Moss, L. S. (2015). Dynamic epistemic logic. In H. van Ditmarsch, J. Y. Halpern, W. van der Hoek, & B. Kooi (Eds.), Handbook of epistemic logic (pp. 261–312). London: College Publications.Google Scholar
  23. Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge: MIT Press.Google Scholar
  24. Osherson, D., & Weinstein, S. (2012). Preference based on reasons. The Review of Symbolic Logic, 5(1), 122–147.CrossRefGoogle Scholar
  25. Pacuit, E. (2007). Some comments on history based structures. Journal of Applied Logic, 5(4), 613–624.CrossRefGoogle Scholar
  26. Pacuit, E., Parikh, R., & Cogan, E. (2006). The logic of knowledge based obligation. Synthese, 149(2), 311–341.CrossRefGoogle Scholar
  27. Parikh, R., & Ramanujam, R. (2003). A knowledge based semantics of messages. Journal of Logic, Language and Information, 12(4), 453–467.CrossRefGoogle Scholar
  28. Ramanujam, R., & Simon, S. (2008). Dynamic logic on games with structured strategies. In G. Brewka, & J. Lang (Eds.), Proceedings of the 11th international conference on principles of knowledge representation and reasoning. KR-08 (pp. 49–58).Google Scholar
  29. Renne, B., Sack, J., & Yap, A. (2016). Logics of temporal-epistemic actions. Synthese, 193(3), 813–849.CrossRefGoogle Scholar
  30. Sack, J. (2008). Temporal languages for epistemic programs. Journal of Logic, Language and Information, 17(2), 183–216.CrossRefGoogle Scholar
  31. van Benthem, J. (2005). An essay on sabotage and obstruction. In D. Hutter (Ed.), Mechanizing mathematical reasoning (pp. 268–276). Berlin: Springer.CrossRefGoogle Scholar
  32. van Benthem, J. (2014). Logic in games. Cambridge: MIT Press.CrossRefGoogle Scholar
  33. van Benthem, J., Gerbrandy, J., & Pacuit, E. (2007). Merging frameworks for interaction: Del and etl. In D. Samet (Ed.), Proceedings of tark 2007.Google Scholar
  34. van Benthem, J., Girard, P., & Roy, O. (2009). Everything else being equal: A modal logic for ceteris paribus preferences. Journal of Philosophical Logic, 38(1), 83–125.CrossRefGoogle Scholar
  35. van Benthem, J., & Liu, F. (2007). Dynamic logic of preference upgrade. Journal of Applied Non-Classical Logics, 17(2), 157–182.CrossRefGoogle Scholar
  36. van der Meyden, R. (1994). Axioms for knowledge and time in distributed systems with perfect recall. In Proceedings of IEEE symposium on logic in computer science (pp. 448–457).Google Scholar
  37. van der Meyden, R., & Wong, K. (2003). Complete axiomatization for reasoning about knowledge and branching time. Studia Logica, 75(1), 93–123.CrossRefGoogle Scholar
  38. van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic Epistemic Logic. Berlin: Springer.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BathBathUK
  2. 2.Institute for Ethical AIOxford Brookes UniversityOxfordEngland

Personalised recommendations