Parsing/Theorem-Proving for Logical Grammar CatLog3

  • Glyn MorrillEmail author


\({ CatLog3}\) is a 7000 line Prolog parser/theorem-prover for logical categorial grammar. In such logical categorial grammar syntax is universal and grammar is reduced to logic: an expression is grammatical if and only if an associated logical statement is a theorem of a fixed calculus. Since the syntactic component is invariant, being the logic of the calculus, logical categorial grammar is purely lexicalist and a particular language model is defined by just a lexical dictionary. The foundational logic of continuity was established by Lambek (Am Math Mon 65:154–170, 1958) (the Lambek calculus) while a corresponding extension including also logic of discontinuity was established by Morrill and Valentín (Linguist Anal 36(1–4):167–192, 2010) (the displacement calculus). \({ CatLog3}\) implements a logic including as primitive connectives the continuous (concatenation) and discontinuous (intercalation) connectives of the displacement calculus, additives, 1st order quantifiers, normal modalities, bracket modalities, and universal and existential subexponentials. In this paper we review the rules of inference for these primitive connectives and their linguistic applications, and we survey the principles of Andreoli’s focusing, and of a generalisation of van Benthem’s count-invariance, on the basis of which \({ CatLog3}\) is implemented.


Count-invariance Focusing Grammar-as-logic Logical categorial grammar Parsing-as-deduction 


  1. Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica, 1, 1–27. Translated in Storrs McCall (Eds.) (1967). Polish logic: 1920–1939 (pp. 207–231). Oxford: Oxford University Press.Google Scholar
  2. Andreoli, J.-M. (1992). Logic programming with focusing in linear logic. Journal of Logic and Computation, 2(3), 297–347.CrossRefGoogle Scholar
  3. Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Language, 29, 47–58.CrossRefGoogle Scholar
  4. Buszkowski, W. (2007). On action logic: Equational theories of action algebras. Journal of Logic and Computation, 17(1), 199–217.CrossRefGoogle Scholar
  5. Buszkowski, W., & Palka, E. (2008). Infinitary action logic: Complexity, models and grammars. Studia Logica, 89(1), 1–18.CrossRefGoogle Scholar
  6. Carpenter, B. (1997). Type-logical semantics. Cambridge, MA: MIT Press.Google Scholar
  7. Chaudhuri, K., Miller, D., & Saurin, A. (2008). Canonical sequent proofs via multi-focusing. In G. Ausiello, J. Karhumäki, G. Mauri, & L. Ong (Eds.), Fifth Ifip international conference on theoretical computer science—Tcs 2008, Boston, MA (pp. 383–396). New York: Springer US.CrossRefGoogle Scholar
  8. Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.Google Scholar
  9. Dowty, D. R., Wall, R. E., & Peters, S. (1981). Introduction to Montague semantics, volume 11 of Synthese Language Library. Dordrecht: D. Reidel.Google Scholar
  10. Fadda, M. (2010). Geometry of grammar: Exercises in Lambek style. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona.Google Scholar
  11. Gentzen, G. (1934). Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39, 176–210 and 405–431. Translated in M. E. Szabo (Eds.) (1969). The collected papers of Gerhard Gentzen (pp. 68–131). Amsterdam: North-Holland.Google Scholar
  12. Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–102.CrossRefGoogle Scholar
  13. Girard, J.-Y. (2011). The blind spot. Zürich: European Mathematical Society.CrossRefGoogle Scholar
  14. Hendriks, H. (1993). Studied flexibility. Categories and types in syntax and semantics. Ph.D. thesis, Universiteit van Amsterdam, ILLC, Amsterdam.Google Scholar
  15. Hepple, M. (1990a). Normal form theorem proving for the Lambek calculus. In: H. Karlgren (Ed.), Proceedings of COLING, Stockholm.Google Scholar
  16. Hepple, M. (1990b). The grammar and processing of order and dependency. Ph.D. thesis, University of Edinburgh.Google Scholar
  17. Jäger, G. (2005). Anaphora and type logical grammar, volume 24 of trends in logic—Studia Logica Library. Dordrecht: Springer.Google Scholar
  18. Kanazawa, M. (1992). The Lambek calculus enriched with additional connectives. Journal of Logic, Language and Information, 1, 141–171.CrossRefGoogle Scholar
  19. Kanovich, M., Kuznetsov, S., & Scedrov, A. (2017). Undecidability of the Lambek calculus with subexponential and bracket modalities. In Proceedings of FCT, volume 10472 of LNCS, pp. 326–340.Google Scholar
  20. König, E. (1989). Parsing as natural deduction. In: Proceedings of the annual meeting of the Association for Computational Linguistics, Vancouver.Google Scholar
  21. Kuznetsov, S., Morrill, G., & Valentín, O. (2017). Count-invariance including exponentials. In M. Kanazawa (Ed.), Mathematics of language (pp. 128–139). London.Google Scholar
  22. Lafont, Y. (2004). Soft linear logic and polynomial time. Theoretical Computer Science, 318(12), 163–180.CrossRefGoogle Scholar
  23. Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170.CrossRefGoogle Scholar
  24. Lambek, J. (1961). On the calculus of syntactic types. In R. Jakobson (Ed.), Structure of language and its mathematical aspects. Proceedings of the symposia in applied mathematics XII (pp. 166–178). Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  25. Lambek, J. (1988). Categorial and categorical grammars. In R. T. Oehrle, E. Bach, & D. Wheeler (Eds.), Categorial grammars and natural language structures, volume 32 of studies in linguistics and philosophy (pp. 297–317). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  26. Miller, D., Nadathur, G., Pfenning, F., & Scedrov, A. (1991). Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic, 51(1–2), 125–157.CrossRefGoogle Scholar
  27. Montague, R. (1973). The proper treatment of quantification in ordinary English. In J. Hintikka, J. Moravcsik, & P. Suppes (Eds.), Approaches to natural language: Proceedings of the 1970 Stanford workshop on grammar and semantics (pp. 189–224). Dordrecht: D. Reidel. Reprinted in R.H. Thomason (Eds.) (1974). Formal philosophy: Selected papers of Richard Montague (pp. 247–270). New Haven: Yale University Press.Google Scholar
  28. Moortgat, M. (1988). Categorial investigations: Logical and linguistic aspects of the Lambek calculus. Dordrecht: Foris. Ph.D. thesis, Universiteit van Amsterdam.Google Scholar
  29. Moortgat, M. (1996). Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3, 4), 349–385. Also in Bulletin of the IGPL, 3(2, 3), 371–401, 1995.Google Scholar
  30. Moortgat, M. (1997). Categorial type logics. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (pp. 93–177). Amsterdam and Cambridge, MA: Elsevier Science B.V. and the MIT Press.Google Scholar
  31. Moortgat, M., & Moot, R. (2013). Proof nets for the Lambek–Grishin calculus. In E. Grefenstette, C. Heunen, & M. Sadrzadeh (Eds.), Compositional methods in physics and linguistics. Oxford: Oxford University Press.Google Scholar
  32. Moot, R. (2014). Extended Lambek calculi and first-order linear logic. In M. M. Claudia Casadio, B. Coeke, & P. Scott (Eds.), Categories and types in logic, language and physics: Essays dedicated to Jim Lambek on the occasion of his 90th birthday, volume 8222 of LNCS, FoLLI Publications in logic, language and information (pp. 297–330). Berlin: Springer.CrossRefGoogle Scholar
  33. Moot, R. (2016). Proof nets for the displacement calculus. In A. Foret, G. Morrill, R. Muskens, R. Osswald, & S. Pogodalla (Eds.), Formal grammar: 20th and 21st international conferences, volume 9804 of LNCS, FoLLI Publications in logic, language and information (pp. 273–289). Berlin: Springer.CrossRefGoogle Scholar
  34. Moot, R., & Retoré, C. (2012). The logic of categorial grammars: A deductive account of natural language syntax and semantics. Heidelberg: Springer.CrossRefGoogle Scholar
  35. Morrill, G. (1990). Intensionality and boundedness. Linguistics and Philosophy, 13(6), 699–726.CrossRefGoogle Scholar
  36. Morrill, G. (1992). Categorial formalisation of relativisation: Pied piping, islands, and extraction sites. Technical Report LSI-92-23-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya.Google Scholar
  37. Morrill, G. (2011). Logic programming of the displacement calculus. In S. Pogodalla & J.-P. Prost (Eds.), Proceedings of logical aspects of computational linguistics 2011, LACL’11, Montpellier, number LNAI 6736 in Springer lecture notes in AI (pp. 175–189). Berlin: Springer.Google Scholar
  38. Morrill, G. (2012). CatLog: A categorial parser/theorem-prover. In LACL 2012 system demonstrations, logical aspects of computational linguistics 2012, Nantes, pp. 13–16.Google Scholar
  39. Morrill, G. (2017). Grammar logicised: Relativisation. Linguistics and Philosophy, 40(2), 119–163.CrossRefGoogle Scholar
  40. Morrill, G. V. (1994). Type logical grammar: Categorial logic of signs. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  41. Morrill, G. V. (2011). Categorial grammar: Logical syntax, semantics, and processing. New York, Oxford: Oxford University Press.Google Scholar
  42. Morrill, G., & Fadda, M. (2008). Proof nets for basic discontinuous Lambek calculus. Logic and Computation, 18(2), 239–256.CrossRefGoogle Scholar
  43. Morrill, G., & Merenciano, J.-M. (1996). Generalising discontinuity. Traitement automatique des langues, 37(2), 119–143.Google Scholar
  44. Morrill, G., Kuznetsov, S., Kanovich, M., & Scedrov, A. (2018). Bracket induction for Lambek calculus with bracket modalities. In A. Foret, G. Kobele, & S. Pogodalla (Eds.), Proceedings of formal grammar 2018, Sofia (pp. 84–101). Berlin: Springer.CrossRefGoogle Scholar
  45. Morrill, G., & Valentín, O. (2010). Displacement calculus. Linguistic Analysis, 36(1–4), 167–192. Special issue Festschrift for Joachim Lambek.Google Scholar
  46. Morrill, G., & Valentín, O. (2014). Semantically inactive multiplicatives and words as types. In N. Asher & S. Soloviev (Eds.), Proceedings of logical aspects of computational linguistics, LACL’14, Toulouse, number 8535 in LNCS, FoLLI Publications on logic, language and information (pp. 149–162). Berlin: Springer.Google Scholar
  47. Morrill, G., & Valentín, O. (2016). Computational coverage of type logical grammar: The Montague test. In C. Piñón (Ed.), Empirical issues in syntax and semantics (Vol. 11, pp. 141–170). Paris: Colloque de Syntaxe et Sémantique à Paris (CSSP).Google Scholar
  48. Morrill, G., & Valentín, O. (2018). Spurious ambiguity and focalization. Computational Linguistics, 44(2), 285–327.CrossRefGoogle Scholar
  49. Morrill, G., Valentín, O., & Fadda, M. (2009). Dutch grammar and processing: A case study in TLG. In P. Bosch, D. Gabelaia, & J. Lang (Eds.), Logic, language, and computation: 7th international Tbilisi symposium, revised selected papers, number 5422 in lecture notes in artificial intelligence (pp. 272–286). Berlin: Springer.CrossRefGoogle Scholar
  50. Morrill, G., Valentín, O., & Fadda, M. (2011). The displacement calculus. Journal of Logic, Language and Information, 20(1), 1–48.CrossRefGoogle Scholar
  51. Valentín, O. (2012). Theory of discontinuous Lambek calculus. Ph.D. thesis, Universitat Autònoma de Barcelona, Barcelona.Google Scholar
  52. Valentín, O., Serret, D., & Morrill, G. (2013). A count invariant for Lambek calculus with additives and bracket modalities. In G. Morrill & M.-J. Nederhof (Eds.), Proceedings of formal grammar 2012 and 2013, volume 8036 of Springer LNCS, FoLLI Publications in logic, language and information (pp. 263–276). Berlin: Springer.Google Scholar
  53. van Benthem, J. (1991). Language in action: Categories, lambdas, and dynamic logic. Number 130 in studies in logic and the foundations of mathematics. Amsterdam: North-Holland. Revised student edition printed in 1995 by the MIT Press.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations