Journal of Logic, Language and Information

, Volume 26, Issue 2, pp 143–177 | Cite as

What Makes an Effective Representation of Information: A Formal Account of Observational Advantages

Article

Abstract

In order to effectively communicate information, the choice of representation is important. Ideally, a chosen representation will aid readers in making desired inferences. In this paper, we develop the theory of observation: what it means for one statement to be observable from another. Using observability, we give a formal characterization of the observational advantages of one representation of information over another. By considering observational advantages, people will be able to make better informed choices of representations of information. To demonstrate the benefit of observation and observational advantages, we apply these concepts to set theory and Euler diagrams. In particular, we can show that Euler diagrams have significant observational advantages over set theory. This formally justifies Larkin and Simon’s claim that “a diagram is (sometimes) worth ten thousand words”.

Keywords

Observation Free rides Inference Euler diagrams Set theory 

Supplementary material

10849_2017_9250_MOESM1_ESM.pdf (219 kb)
Supplementary material 1 (pdf 218 KB)

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nadi, D., & Patel-Schneider, P. (Eds.). (2003). The description logic handbook: theory, implementation, and applications. New York, NY: Cambridge University Press.Google Scholar
  2. Barwise, J., & Etchemendy, J. (1994). Hyperproof. Stanford, CA: CSLI Publications.Google Scholar
  3. Barwise, J., & Etchemendy, J. (1996). Visual information and valid reasoning. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 3–25). New York, NY: Oxford University Press.Google Scholar
  4. Collins, C., Penn, G., & Carpendale, M. S. T. (2009). Bubble sets: Revealing set relations with isocontours over existing visualizations. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1009–1016.CrossRefGoogle Scholar
  5. Couturat, L. (1903). Opuscules et fragments inédits de Leibniz. Paris: Felix Alcan.Google Scholar
  6. Dau, F. (2007). Constants and functions in Peirce’s existential graphs. In International conference on conceptual structures (pp. 429–442). Berlin: Springer.Google Scholar
  7. Dretske, F. (1969). Seeing and knowing. London: Routledge & Kegan Paul.Google Scholar
  8. Funt, B. (1995). Problem-solving with diagrammatic representations. In J. Glasgow, N. Narayanan, & B. Chandrasekaran (Eds.), Diagrammatic reasoning: Cognitive and computational perspectives (pp. 33–68). Cambridge, MA: The MIT Press. (Originally published in 1980).Google Scholar
  9. Howse, J., Stapleton, G., Flower, J., & Taylor, J. (2002). Corresponding regions in Euler diagrams. In: Hegarty, M., Meyer, B., & Narayanan, H. (Eds.), Proceedings of 2nd international conference on the theory and application of diagrams. Lecture notes in artificial intelligence (Vol. 2317, pp. 46–60). Springer.Google Scholar
  10. Howse, J., Stapleton, G., & Taylor, J. (2005). Spider diagrams. LMS Journal of Computation and Mathematics, 8, 145–194.CrossRefGoogle Scholar
  11. Kent, S. (1997). Constraint diagrams: Visualizing invariants in object-oriented models. In: Proceedings of the 12th ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications, OOPSLA ’97 (pp. 327–341). New York, NY: ACM.Google Scholar
  12. Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.CrossRefGoogle Scholar
  13. Lohmann, S., Negru, S., Haag, F., & Ertl, T. (2014). VOWL 2: User-oriented visualization of ontologies. In: 19th International conference on knowledge engineering and knowledge management. Lecture notes in computer science (Vol. 8876, pp. 266–281). Springer.Google Scholar
  14. Meulemans, W., Henry Riche, N., Speckmann, B., Alper, B., & Dwyer, T. (2013). Kelpfusion: A hybrid set visualization technique. IEEE Transactions on Visualization and Computer Graphics, 19(11), 1846–1858.CrossRefGoogle Scholar
  15. Peirce, C. (1933). Collected papers (Vol. 4). Cambridge, MA: Harvard University Press.Google Scholar
  16. Sato, Y., Mineshima, K., & Takemura, R. (2010). The efficacy of Euler and Venn diagrams in deductive reasoning: Empirical findings. In: 6th international conference on the theory and application of diagrams. Lecture notes in computer science (Vol. 6170, pp. 6–22). Springer.Google Scholar
  17. Shimojima, A. (1996). Operational constraints in diagrammatic reasoning. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 27–48). New York, NY: Oxford University Press.Google Scholar
  18. Shimojima, A. (2015). Semantic properties of diagrams and their cognitive potentials. Stanford, CA: CSLI Publications.Google Scholar
  19. Shimojima, A., & Barker-Plummer, D. (2014). The Barwise–Seligman model of representation systems: A philosophical explication. In: 8th international conference on the theory and application of diagrams. Lecture notes in computer science (Vol. 8578, pp. 231–245). Springer.Google Scholar
  20. Shin, S. J. (1994). The logical status of diagrams. Cambridge: Cambridge University Press.Google Scholar
  21. Simonetto, P. (2012). Visualisation of overlapping sets and clusters with Euler diagrams. Ph.D. thesis, Université Bordeaux.Google Scholar
  22. Simonetto, P., Auber, D., & Archambault, D. (2009). Fully automatic visualisation of overlapping sets. Computer Graphics Forum, 28(3), 967–974.CrossRefGoogle Scholar
  23. Stapleton, G., Flower, J., Rodgers, P., & Howse, J. (2012). Automatically drawing Euler diagrams with circles. Journal of Visual Languages and Computing, 23(3), 163–193.CrossRefGoogle Scholar
  24. Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J., & Oliver, I. (2013). Formalizing concept diagrams. In Visual languages and computing (pp. 182–187). Skokie: Knowledge Systems Institute.Google Scholar
  25. Stapleton, G., & Masthoff, J. (2007). Incorporating negation into visual logics: A case study using Euler diagrams. In P. Maresca, Y. Khalifa, & X. Li (Eds.), Visual languages and computing 2007 (pp. 187–194). Skokie: Knowledge Systems Institute.Google Scholar
  26. Swoboda, N., & Allwein, G. (2004). Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of inference. Journal on Software and System Modeling, 3(2), 136–149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Gem Stapleton
    • 1
  • Mateja Jamnik
    • 2
  • Atsushi Shimojima
    • 3
  1. 1.University of BrightonBrightonUK
  2. 2.University of CambridgeCambridgeUK
  3. 3.Doshisha UniversityKyotoJapan

Personalised recommendations