Journal of Logic, Language and Information

, Volume 26, Issue 2, pp 89–108 | Cite as

A Constructive Solution to the Ranking Problem in Partial Order Optimality Theory

Article

Abstract

Partial order optimality theory (PoOT) (Anttila and Cho in Lingua 104:31–56, 1998) is a conservative generalization of classical optimality theory (COT) (Prince and Smolensky in Optimality theory: constraint interaction in generative grammar, Blackwell Publishers, Malden, 1993/2004) that makes possible the modeling of free variation and quantitative regularities without any numerical parameters. Solving the ranking problem for PoOT has so far remained an outstanding problem: allowing for free variation, given a finite set of input/output pairs, i.e., a dataset, \(\Delta \) that a speaker S knows to be part of some language L, how can S learn the set of all grammars G under some constraint set C compatible with \(\Delta \)?. Here, allowing for free variation, given the set of all PoOT grammars GPoOT over a constraint set C , for an arbitrary \(\Delta \), I provide set-theoretic means for constructing the actual set G compatible with \(\Delta \). Specifically, I determine the set of all STRICT ORDERS of C that are compatible with \(\Delta \). As every strict total order is a strict order, our solution is applicable in both PoOT and COT, showing that the ranking problem in COT is a special instance of a more general one in PoOT.

Keywords

Optimality theory Classical optimality theory Partial order optimality theory Formal linguistics Linguistics Honology Formal phonology Order theory Set theory Ranking problem 

References

  1. Anttila, A. (1997). Deriving variation from grammar. In R. van Hout, F. Hinskens, & L. Wetzels (Eds.), Variation, change and phonological theory (pp. 35–68).Google Scholar
  2. Anttila, A. (2009). Derived environment effects in colloquial helsinki finnish. In K. Hanson & S. Inkelas (Eds.), The nature of the word: Essays in honor of Paul Kiparsky (pp. 433–460). Cambridge, MA: MIT Press.Google Scholar
  3. Anttila, A., & Andrus, C. (2006). T-Orders. Stanford: Stanford University.Google Scholar
  4. Anttila, A., & Cho, Y. Y. (1998). Variation and change in optimality theory. Lingua, 104, 31–56.CrossRefGoogle Scholar
  5. Blutner, R. (1999). Some aspects of optimality in natural language interpretation. In H. de Hoop & H. de Swart (Eds.), Papers on optimality theoretic semantics (pp. 1–21). Utrecht: Utrecht Institute of Linguistics OTS.Google Scholar
  6. Boersma, P. (1997). How we learn variation, optionality, and probability. IFA Proceedings, 21, 43–58.Google Scholar
  7. Brasoveanu, A., & Prince, A. (2005). Ranking and necessity. In Part I. Rutgers Optimality Archive-794.Google Scholar
  8. Brasoveanu, A., & Prince, A. (2011). Ranking and necessity: The fusional reduction algorithm. Natural Language and Linguistic Theory, 29, 3–70.CrossRefGoogle Scholar
  9. Davey, B. A., & Priestley, H. A. (2002). Introduction to lattices and order. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Jäger, G. (2003). Gradient constraints in finite state OT: The unidirectional and the bidirectional case. Natural Language Engineering, 9(1), 21–38.CrossRefGoogle Scholar
  11. Legendre, G. (2001). Optimality theoretic syntax. An introduction to optimality theory in syntax. Cambridge, MA: MIT Press.Google Scholar
  12. McCarthy, J. J. (2008). Doing optimality theory. Oxford: Blackwell Publishers.CrossRefGoogle Scholar
  13. Prince, A. (2002). Entailed ranking arguments. Rutgers Optimality Archive-500.Google Scholar
  14. Prince, A., & Smolensky, P. (1993/2004). Optimality theory: Constraint interaction in generative grammar. Malden, MA: Blackwell Publishers.Google Scholar
  15. Tesar, B. (1995). Computational optimality theory. Ph.D. thesis, University of Colorado at Boulder.Google Scholar
  16. Tesar, B., & Paul, S. (1993). The learnability of optimality theory: An algorithm and some basic complexity results. Rutgers Optimality Archive-2.Google Scholar
  17. Zeevat, H. (2001). The asymmetry of optimality theoretic syntax and semantics. Journal of Semantics, 17(3), 243–262.CrossRefGoogle Scholar
  18. Zwarts, J. (2004). Competition between word meanings: The polysemy of (A)round. In C. Meier & M. Weisgerber (Eds.), Proceedings of SuB8. Konstanz: University of Konstanz, Linguistics Working Papers.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.200 Winchester Circle Apt G16Los GatosUSA

Personalised recommendations